56 research outputs found

    Noisy: Identification of problematic columns in multiple sequence alignments

    Get PDF
    Motivation Sequence-based methods for phylogenetic reconstruction from (nucleic acid) sequence data are notoriously plagued by two effects: homoplasies and alignment errors. Large evolutionary distances imply a large number of homoplastic sites. As most protein-coding genes show dramatic variations in substitution rates that are not uncorrelated across the sequence, this often leads to a patchwork pattern of (i) phylogenetically informative and (ii) effectively randomized regions. In highly variable regions, furthermore, alignment errors accumulate resulting in sometimes misleading signals in phylogenetic reconstruction. Results We present here a method that, based on assessing the distribution of character states along a cyclic ordering of the taxa, allows the identification of phylogenetically uninformative homoplastic sites in a multiple sequence alignment. Removal of these sites appears to improve the performance of phylogenetic reconstruction algorithms as measured by various indices of 'tree quality'. In particular, we obtain more stable trees due to the exclusion of phylogenetically incompatible sites that most likely represent strongly randomized characters. Software The computer program noisy implements this approach. It can be employed to improving phylogenetic reconstruction capability with quite a considerable success rate whenever (1) the average bootstrap support obtained from the original alignment is low, and (2) there are sufficiently many taxa in the data set – at least, say, 12 to 15 taxa. The software can be obtained under the GNU Public License from http://www.bioinf.uni-leipzig.de/Software/noisy/

    Eye gaze patterns and functional brain responses during emotional face processing in adolescents with conduct disorder

    Get PDF
    Contains fulltext : 227105.pdf (preprint version ) (Open Access)Background: Conduct disorder (CD) is characterized by severe aggressive and antisocial behavior. Initial evidence suggests neural deficits and aberrant eye gaze pattern during emotion processing in CD; both concepts, however, have not yet been studied simultaneously. The present study assessed the functional brain correlates of emotional face processing with and without consideration of concurrent eye gaze behavior in adolescents with CD compared to typically developing (TD) adolescents. Methods: 58 adolescents (23CD/35TD; average age=16 years/range=14-19 years) underwent an implicit emotional face processing task. Neuroimaging analyses were conducted for a priori-defined regions of interest (insula, amygdala, and medial orbitofrontal cortex) and using a full-factorial design assessing the main effects of emotion (neutral, anger, fear), group and the interaction thereof (cluster-level, p<.05 FWE-corrected) with and without consideration of concurrent eye gaze behavior (i.e., time spent on the eye region). Results: Adolescents with CD showed significant hypo-activations during emotional face processing in right anterior insula compared to TD adolescents, independent of the emotion presented. In-scanner eye-tracking data revealed that adolescents with CD spent significantly less time on the eye, but not mouth region. Correcting for eye gaze behavior during emotional face processing reduced group differences previously observed for right insula. Conclusions: Atypical insula activation during emotional face processing in adolescents with CD may partly be explained by attentional mechanisms (i.e., reduced gaze allocation to the eyes, independent of the emotion presented). An increased understanding of the mechanism causal for emotion processing deficits observed in CD may ultimately aid the development of personalized intervention programs.11 p

    Establishment and characterization of a novel recombinant reporter HBV utilizing the Cre-lox recombination system.

    No full text
    Human adenovirus (HAdV) E1B-55K is a multifunctional regulator of productive viral replication and oncogenic transformation in nonpermissive mammalian cells. These functions depend on E1B-55K&#39;s posttranslational modification with the SUMO protein and its binding to HAdV E4orf6. Both early viral proteins recruit specific host factors to form an E3 ubiquitin ligase complex that targets antiviral host substrates for proteasomal degradation. Recently, we reported that the PML-NB associated factor Daxx represses efficient HAdV productive infection and is proteasomally degraded via a SUMO-E1B-55K-dependent, E4orf6-independent pathway, the details of which remained to be established. RNF4, a cellular SUMO-targeted ubiquitin ligase (STUbL), induces ubiquitinylation of specific SUMOy lated proteins and plays an essential role during DNA repair. Here, we show that E1B-55K recruits RNF4 to the insoluble nuclear matrix fraction of the infected cell to support RNF4/Daxx association, promoting Daxx PTM and thus inhibiting this antiviral factor. Removing RNF4 from infected cells using RNA interference resulted in blocking the proper establishment of viral replication centers and significantly diminished viral gene expression. These results provide a model for how HAdV antagonize the antiviral host responses by exploiting the functional capacity of cellular STUbLs. Thus, RNF4 and its STUbL function represent a positive factor during lytic infection and a novel candidate for future therapeutic antiviral intervention strategies.IMPORTANCE Daxx is a PML-NB-associated transcription factor that was recently shown to repress efficient HAdV productive infection. To counteract this antiviral measurement during infection, Daxx is degraded via a novel pathway including viral E1B-55K and host proteasomes. This virus-mediated degradation is independent of the classical HAdV E3 ubiquitin ligase complex, which is essential during viral infection to target other host antiviral substrates. To maintain a productive viral life cycle, HAdV E1B-55K early viral protein inhibits the chromatin-remodeling factor Daxx in a SUMO-dependent manner. In addition, viral E1B-55K protein recruits the STUbL RNF4 and sequesters it into the insoluble fraction of the infected cell. E1B-55K promotes complex formation between RNF4-and E1B-55K-targeted Daxx protein, supporting Daxx posttranslational modification prior to functional inhibition. Hence, RNF4 represents a novel host factor that is beneficial for HAdV gene expression by supporting Daxx counteraction. In this regard, RNF4 and other STUbL proteins might represent novel targets for therapeutic intervention

    Noisy: Identification of problematic columns in multiple sequence alignments

    Get PDF
    Motivation Sequence-based methods for phylogenetic reconstruction from (nucleic acid) sequence data are notoriously plagued by two effects: homoplasies and alignment errors. Large evolutionary distances imply a large number of homoplastic sites. As most protein-coding genes show dramatic variations in substitution rates that are not uncorrelated across the sequence, this often leads to a patchwork pattern of (i) phylogenetically informative and (ii) effectively randomized regions. In highly variable regions, furthermore, alignment errors accumulate resulting in sometimes misleading signals in phylogenetic reconstruction. Results We present here a method that, based on assessing the distribution of character states along a cyclic ordering of the taxa, allows the identification of phylogenetically uninformative homoplastic sites in a multiple sequence alignment. Removal of these sites appears to improve the performance of phylogenetic reconstruction algorithms as measured by various indices of 'tree quality'. In particular, we obtain more stable trees due to the exclusion of phylogenetically incompatible sites that most likely represent strongly randomized characters. Software The computer program noisy implements this approach. It can be employed to improving phylogenetic reconstruction capability with quite a considerable success rate whenever (1) the average bootstrap support obtained from the original alignment is low, and (2) there are sufficiently many taxa in the data set – at least, say, 12 to 15 taxa. The software can be obtained under the GNU Public License from http://www.bioinf.uni-leipzig.de/Software/noisy/

    Efficacy and Safety of AMG 102

    No full text
    info:eu-repo/semantics/publishe

    T cell derived cytokines IFN-gamma and TNF-alpha can reduce HBV cccDNA without cytolysis.

    No full text
    Viral clearance involves immune cell cytolysis of infected cells. However, studies of HBV infection in chimpanzees (Guidotti et al. 1999) have indicated that cytokines released by immune cells can also achieve antiviral effects via non-cytolytic processes. We have previously shown that interferon-&beta; (IFN&beta;) treatment or lymphotoxin-&beta; receptor (LT&beta;R) agonisation can lead to cccDNA deamination and degradation without cytolysis via induction of cytosine deaminases APOBEC3A (A3A) or APOBEC3B (A3B), respectively (Lucifora, Xia et al. 2014)

    Identification of ISG20 as the nuclease involved in Interferon-induced decline of HBV cccDNA.

    No full text
    Human adenovirus (HAdV) E1B-55K is a multifunctional regulator of productive viral replication and oncogenic transformation in nonpermissive mammalian cells. These functions depend on E1B-55K&#39;s posttranslational modification with the SUMO protein and its binding to HAdV E4orf6. Both early viral proteins recruit specific host factors to form an E3 ubiquitin ligase complex that targets antiviral host substrates for proteasomal degradation. Recently, we reported that the PML-NB associated factor Daxx represses efficient HAdV productive infection and is proteasomally degraded via a SUMO-E1B-55K-dependent, E4orf6-independent pathway, the details of which remained to be established. RNF4, a cellular SUMO-targeted ubiquitin ligase (STUbL), induces ubiquitinylation of specific SUMOy lated proteins and plays an essential role during DNA repair. Here, we show that E1B-55K recruits RNF4 to the insoluble nuclear matrix fraction of the infected cell to support RNF4/Daxx association, promoting Daxx PTM and thus inhibiting this antiviral factor. Removing RNF4 from infected cells using RNA interference resulted in blocking the proper establishment of viral replication centers and significantly diminished viral gene expression. These results provide a model for how HAdV antagonize the antiviral host responses by exploiting the functional capacity of cellular STUbLs. Thus, RNF4 and its STUbL function represent a positive factor during lytic infection and a novel candidate for future therapeutic antiviral intervention strategies.IMPORTANCE Daxx is a PML-NB-associated transcription factor that was recently shown to repress efficient HAdV productive infection. To counteract this antiviral measurement during infection, Daxx is degraded via a novel pathway including viral E1B-55K and host proteasomes. This virus-mediated degradation is independent of the classical HAdV E3 ubiquitin ligase complex, which is essential during viral infection to target other host antiviral substrates. To maintain a productive viral life cycle, HAdV E1B-55K early viral protein inhibits the chromatin-remodeling factor Daxx in a SUMO-dependent manner. In addition, viral E1B-55K protein recruits the STUbL RNF4 and sequesters it into the insoluble fraction of the infected cell. E1B-55K promotes complex formation between RNF4-and E1B-55K-targeted Daxx protein, supporting Daxx posttranslational modification prior to functional inhibition. Hence, RNF4 represents a novel host factor that is beneficial for HAdV gene expression by supporting Daxx counteraction. In this regard, RNF4 and other STUbL proteins might represent novel targets for therapeutic intervention
    • …
    corecore