2,447 research outputs found

    Bridging Elementary Landscapes and a Geometric Theory of Evolutionary Algorithms: First Steps

    Get PDF
    This is the author accepted manuscript. The final version is available from Springer via the DOI in this record.Paper to be presented at the Fifteenth International Conference on Parallel Problem Solving from Nature (PPSN XV), Coimbra, Portugal on 8-12 September.Based on a geometric theory of evolutionary algorithms, it was shown that all evolutionary algorithms equipped with a geometric crossover and no mutation operator do the same kind of convex search across representations, and that they are well matched with generalised forms of concave fitness landscapes for which they provably find the optimum in polynomial time. Analysing the landscape structure is essential to understand the relationship between problems and evolutionary algorithms. This paper continues such investigations by considering the following challenge: develop an analytical method to recognise that the fitness landscape for a given problem provably belongs to a class of concave fitness landscapes. Elementary landscapes theory provides analytic algebraic means to study the landscapes structure. This work begins linking both theories to better understand how such method could be devised using elementary landscapes. Examples on well known One Max, Leading Ones, Not-All-Equal Satisfiability and Weight Partitioning problems illustrate the fundamental concepts supporting this approach

    Thermoelectric Properties of Intermetallic Semiconducting RuIn3 and Metallic IrIn3

    Get PDF
    Low temperature (<400 K) thermoelectric properties of semiconducting RuIn3 and metallic IrIn3 are reported. RuIn3 is a narrow band gap semiconductor with a large n-type Seebeck coefficient at room temperature (S(290K)~400 {\mu}V/K), but the thermoelectric Figure of merit (ZT(290K) = 0.007) is small because of high electrical resistivity and thermal conductivity ({\kappa}(290 K) ~ 2.0 W/m K). IrIn3 is a metal with low thermopower at room temperature (S(290K)~20 {\mu}V/K) . Iridium substitution on the ruthenium site has a dramatic effect on transport properties, which leads to a large improvement in the power factor and corresponding Figure of merit (ZT(380 K) = 0.053), improving the efficiency of the material by an over of magnitude.Comment: Submitted to JA

    Three-Nucleon Force and the Δ\Delta-Mechanism for Pion Production and Pion Absorption

    Full text link
    The description of the three-nucleon system in terms of nucleon and Δ\Delta degrees of freedom is extended to allow for explicit pion production (absorption) from single dynamic Δ\Delta de-excitation (excitation) processes. This mechanism yields an energy dependent effective three-body hamiltonean. The Faddeev equations for the trinucleon bound state are solved with a force model that has already been tested in the two-nucleon system above pion-production threshold. The binding energy and other bound state properties are calculated. The contribution to the effective three-nucleon force arising from the pionic degrees of freedom is evaluated. The validity of previous coupled-channel calculations with explicit but stable Δ\Delta isobar components in the wavefunction is studied.Comment: 23 pages in Revtex 3.0, 9 figures (not included, available as postscript files upon request), CEBAF-TH-93-0

    Injective split systems

    Full text link
    A split system S\mathcal S on a finite set XX, X3|X|\ge3, is a set of bipartitions or splits of XX which contains all splits of the form {x,X{x}}\{x,X-\{x\}\}, xXx \in X. To any such split system S\mathcal S we can associate the Buneman graph B(S)\mathcal B(\mathcal S) which is essentially a median graph with leaf-set XX that displays the splits in S\mathcal S. In this paper, we consider properties of injective split systems, that is, split systems S\mathcal S with the property that medB(S)(Y)medB(S)(Y)\mathrm{med}_{\mathcal B(\mathcal S)}(Y) \neq \mathrm{med}_{\mathrm B(\mathcal S)}(Y') for any 3-subsets Y,YY,Y' in XX, where medB(S)(Y)\mathrm {med}_{\mathcal B(\mathcal S)}(Y) denotes the median in B(S)\mathcal B(\mathcal S) of the three elements in YY considered as leaves in B(S)\mathcal B(\mathcal S). In particular, we show that for any set XX there always exists an injective split system on XX, and we also give a characterization for when a split system is injective. We also consider how complex the Buneman graph B(S)\mathcal B(\mathcal S) needs to become in order for a split system S\mathcal S on XX to be injective. We do this by introducing a quantity for X|X| which we call the injective dimension for X|X|, as well as two related quantities, called the injective 2-split and the rooted-injective dimension. We derive some upper and lower bounds for all three of these dimensions and also prove that some of these bounds are tight. An underlying motivation for studying injective split systems is that they can be used to obtain a natural generalization of symbolic tree maps. An important consequence of our results is that any three-way symbolic map on XX can be represented using Buneman graphs.Comment: 22 pages, 3 figure

    Modularity and Optimality in Social Choice

    Get PDF
    Marengo and the second author have developed in the last years a geometric model of social choice when this takes place among bundles of interdependent elements, showing that by bundling and unbundling the same set of constituent elements an authority has the power of determining the social outcome. In this paper we will tie the model above to tournament theory, solving some of the mathematical problems arising in their work and opening new questions which are interesting not only from a mathematical and a social choice point of view, but also from an economic and a genetic one. In particular, we will introduce the notion of u-local optima and we will study it from both a theoretical and a numerical/probabilistic point of view; we will also describe an algorithm that computes the universal basin of attraction of a social outcome in O(M^3 logM) time (where M is the number of social outcomes).Comment: 42 pages, 4 figures, 8 tables, 1 algorithm

    Integrated optical multi-ion quantum logic

    Full text link
    Practical and useful quantum information processing (QIP) requires significant improvements with respect to current systems, both in error rates of basic operations and in scale. Individual trapped-ion qubits' fundamental qualities are promising for long-term systems, but the optics involved in their precise control are a barrier to scaling. Planar-fabricated optics integrated within ion trap devices can make such systems simultaneously more robust and parallelizable, as suggested by previous work with single ions. Here we use scalable optics co-fabricated with a surface-electrode ion trap to achieve high-fidelity multi-ion quantum logic gates, often the limiting elements in building up the precise, large-scale entanglement essential to quantum computation. Light is efficiently delivered to a trap chip in a cryogenic environment via direct fibre coupling on multiple channels, eliminating the need for beam alignment into vacuum systems and cryostats and lending robustness to vibrations and beam pointing drifts. This allows us to perform ground-state laser cooling of ion motion, and to implement gates generating two-ion entangled states with fidelities >99.3(2)%>99.3(2)\%. This work demonstrates hardware that reduces noise and drifts in sensitive quantum logic, and simultaneously offers a route to practical parallelization for high-fidelity quantum processors. Similar devices may also find applications in neutral atom and ion-based quantum-sensing and timekeeping

    Evolutionary dynamics of the most populated genotype on rugged fitness landscapes

    Full text link
    We consider an asexual population evolving on rugged fitness landscapes which are defined on the multi-dimensional genotypic space and have many local optima. We track the most populated genotype as it changes when the population jumps from a fitness peak to a better one during the process of adaptation. This is done using the dynamics of the shell model which is a simplified version of the quasispecies model for infinite populations and standard Wright-Fisher dynamics for large finite populations. We show that the population fraction of a genotype obtained within the quasispecies model and the shell model match for fit genotypes and at short times, but the dynamics of the two models are identical for questions related to the most populated genotype. We calculate exactly several properties of the jumps in infinite populations some of which were obtained numerically in previous works. We also present our preliminary simulation results for finite populations. In particular, we measure the jump distribution in time and find that it decays as t2t^{-2} as in the quasispecies problem.Comment: Minor changes. To appear in Phys Rev

    Optimal quantum control in nanostructures: Theory and application to generic three-level system

    Full text link
    Coherent carrier control in quantum nanostructures is studied within the framework of Optimal Control. We develop a general solution scheme for the optimization of an external control (e.g., lasers pulses), which allows to channel the system's wavefunction between two given states in its most efficient way; physically motivated constraints, such as limited laser resources or population suppression of certain states, can be accounted for through a general cost functional. Using a generic three-level scheme for the quantum system, we demonstrate the applicability of our approach and identify the pertinent calculation and convergence parameters.Comment: 7 pages; to appear in Phys. Rev.
    corecore