36 research outputs found

    The First Stars: A Low-Mass Formation Mode

    Get PDF
    We perform numerical simulations of the growth of a Population III stellar system under photodissociating feedback. We start from cosmological initial conditions at z = 100, self-consistently following the formation of a minihalo at z = 15 and the subsequent collapse of its central gas to high densities. The simulations resolve scales as small as ~ 1 AU, corresponding to gas densities of 10^16 cm^-3. Using sink particles to represent the growing protostars, we evolve the stellar system for the next 5000 years. We find that this emerging stellar group accretes at an unusually low rate compared with minihalos which form at earlier times (z = 20 - 30), or with lower baryonic angular momentum. The stars in this unusual system will likely reach masses ranging from < 1 M_sun to 5 M_sun by the end of their main-sequence lifetimes, placing them in the mass range for which stars will undergo an asymptotic giant branch (AGB) phase. Based upon the simulation, we predict the rare existence of Population III stars that have survived to the present day and have been enriched by mass overflow from a previous AGB companion.Comment: 19 pages, 17 figures, to apper in Ap

    Constraining the Statistics of Population III Binaries

    Get PDF
    We perform a cosmological simulation in order to model the growth and evolution of Population III (Pop III) stellar systems in a range of host minihalo environments. A Pop III multiple system forms in each of the ten minihaloes, and the overall mass function is top-heavy compared to the currently observed initial mass function in the Milky Way. Using a sink particle to represent each growing protostar, we examine the binary characteristics of the multiple systems, resolving orbits on scales as small as 20 AU. We find a binary fraction of ~36%, with semi-major axes as large as 3000 AU. The distribution of orbital periods is slightly peaked at < 900 yr, while the distribution of mass ratios is relatively flat. Of all sink particles formed within the ten minihaloes, ~50% are lost to mergers with larger sinks, and ~50% of the remaining sinks are ejected from their star-forming disks. The large binary fraction may have important implications for Pop III evolution and nucleosynthesis, as well as the final fate of the first stars.Comment: 16 pages, 14 figures, to appear in MNRA

    The Mutual Interaction Between Population III Stars and Self-Annihilating Dark Matter

    Full text link
    We use cosmological simulations of high-redshift minihalos to investigate the effect of dark matter annihilation (DMA) on the collapse of primordial gas. We numerically investigate the evolution of the gas as it assembles in a Population III stellar disk. We find that when DMA effects are neglected, the disk undergoes multiple fragmentation events beginning at ~ 500 yr after the appearance of the first protostar. On the other hand, DMA heating and ionization of the gas speeds the initial collapse of gas to protostellar densities and also affects the stability of the developing disk against fragmentation, depending on the DM distribution. We compare the evolution when we model the DM density with an analytical DM profile which remains centrally peaked, and when we simulate the DM profile using N-body particles (the 'live' DM halo). When utilizing the analytical DM profile, DMA suppresses disk fragmentation for ~ 3500 yr after the first protostar forms, in agreement with earlier work. However, when using a 'live' DM halo, the central DM density peak is gradually flattened due to the mutual interaction between the DM and the rotating gaseous disk, reducing the effects of DMA on the gas, and enabling secondary protostars of mass ~ 1 M_sol to be formed within ~ 900 yr. These simulations demonstrate that DMA is ineffective in suppressing gas collapse and subsequent fragmentation, rendering the formation of long-lived dark stars unlikely. However, DMA effects may still be significant in the early collapse and disk formation phase of primordial gas evolution.Comment: 17 pages, 11 figures, to appear in MNRA

    The First Stars: formation under X-ray feedback

    Full text link
    We investigate the impact of a cosmic X-ray background (CXB) on Population III stars forming in a minihalo at z25z\simeq25. Using the smoothed particle hydrodynamics code GADGET-2, we attain sufficient numerical resolution to follow gas collapsing into the centre of the minihalo from cosmological initial conditions up to densities of 1012cm310^{12}\,{\rm cm}^{-3}, at which point we form sink particles. This allows us to study how the presence of a CXB affects the formation of H2_2 and HD in the gas prior to becoming fully molecular. Using a suite of simulations for a range of possible CXB models, we follow each simulation for 5000\yr after the first sink particle forms. The CXB provides two competing effects, with X-rays both heating the gas and increasing the free electron fraction, allowing more H2_2 to form. X-ray heating dominates below n1cm3n\sim1\,{\rm cm}^{-3}, while the additional H2_2 cooling becomes more important above n102cm3n\sim10^2\,{\rm cm}^{-3}. The gas becomes optically thick to X-rays as it exits the quasi-hydrostatic `loitering phase,' such that the primary impact of the CXB is to cool the gas at intermediate densities, resulting in an earlier onset of baryonic collapse into the dark matter halo. At the highest densities, self-shielding results in similar thermodynamic behaviour across a wide range of CXB strengths. Consequently, we find that star formation is relatively insensitive to the presence of a CXB; both the number and the characteristic mass of the stars formed remains quite similar even as the strength of the CXB varies by several orders of magnitude.Comment: Accepted for publication in MNRAS. Includes improved treatment of X-ray optical depth. 13 pages, 12 figure

    The First Stars: Mass Growth Under Protostellar Feedback

    Full text link
    We perform three-dimensional cosmological simulations to examine the growth of metal-free, Population III (Pop III) stars under radiative feedback. We begin our simulation at z=100 and trace the evolution of gas and dark matter until the formation of the first minihalo. We then follow the collapse of the gas within the minihalo up to densities of n = 10^12 cm^-3, at which point we replace the high-density particles with a sink particle to represent the growing protostar. We model the effect of Lyman-Werner (LW) radiation emitted by the protostar, and employ a ray-tracing scheme to follow the growth of the surrounding H II region over the next 5000 yr. We find that a disk assembles around the first protostar, and that radiative feedback will not prevent further fragmentation of the disk to form multiple Pop III stars. Ionization of neutral hydrogen and photodissociation of H_2 by LW radiation leads to heating of the dense gas to several thousand Kelvin, and this warm region expands outward at the gas sound speed. Once the extent of this warm region becomes equivalent to the size of the disk, the disk mass declines while the accretion rate onto the protostars is reduced by an order of magnitude. This occurs when the largest sink has grown to ~ 20 M_sol while the second sink has grown to 7 M_sol, and we estimate the main sink will approach an asymptotic value of ~ 30 M_sol by the time it reaches the main sequence. Our simulation thus indicates that the most likely outcome is a massive Pop III binary. However, we simulate only one minihalo, and the statistical variation between minihaloes may be substantial. If Pop III stars were typically unable to grow to more than a few tens of solar masses, this would have important consequences for the occurence of pair-instability supernovae in the early Universe as well as the Pop III chemical signature in the oldest stars observable today.Comment: 21 pages, 11 figures, to appear in MNRA

    Effect of Population III Multiplicity on Dark Star Formation

    Full text link
    We numerically study the mutual interaction between dark matter (DM) and Population III (Pop III) stellar systems in order to explore the possibility of Pop III dark stars within this physical scenario. We perform a cosmological simulation, initialized at z ~ 100, which follows the evolution of gas and DM. We analyze the formation of the first minihalo at z ~ 20 and the subsequent collapse of the gas to densities of 10^12 cm^-3. We then use this simulation to initialize a set of smaller-scale `cut-out' simulations in which we further refine the DM to have spatial resolution similar to that of the gas. We test multiple DM density profiles, and we employ the sink particle method to represent the accreting star-forming region. We find that, for a range of DM configurations, the motion of the Pop III star-disk system serves to separate the positions of the protostars with respect to the DM density peak, such that there is insufficient DM to influence the formation and evolution of the protostars for more than ~ 5000 years. In addition, the star-disk system causes gravitational scattering of the central DM to lower densities, further decreasing the influence of DM over time. Any DM-powered phase of Pop III stars will thus be very short-lived for the typical multiple system, and DM will not serve to significantly prolong the life of Pop III stars.Comment: 16 pages, 11 figures, to appear in MNRA
    corecore