18 research outputs found

    The Complex Exhumation History of Jezero Crater Floor Unit and Its Implication for Mars Sample Return

    No full text
    During the first year of NASA's Mars 2020 mission, Perseverance rover has investigated the dark crater floor unit of Jezero crater and four samples of this unit have been collected. The focus of this paper is to assess the potential of these samples to calibrate the crater-based Martian chronology. We first review the previous estimation of crater-based model age of this unit. Then, we investigate the impact crater density distribution across the floor unit. It reveals that the crater density is heterogeneous from areas which have been exposed to the bombardment during the last 3 Ga to areas very recently exposed to bombardment. It suggests a complex history of exposure to impact cratering. We also display evidence of several remnants of deposits on the top of the dark floor unit across Jezero below which the dark floor unit may have been buried. We propose the following scenario of burying/exhumation: the dark floor unit would have been initially buried below a unit that was a few tens of meters thick. This unit then gradually eroded away due to Aeolian processes from the northeast to the west, resulting in uneven exposure to impact bombardment over 3 Ga. A cratering model reproducing this scenario confirms the feasibility of this hypothesis. Due to the complexity of its exposure history, the Jezero dark crater floor unit will require additional detailed analysis to understand how the Mars 2020 mission samples of the crater floor can be used to inform the Martian cratering chronology

    Modulation of the Membrane Type 1 Matrix Metalloproteinase Cytoplasmic Tail Enhances Tumor Cell Invasion and Proliferation in Three-dimensional Collagen Matrices*

    Get PDF
    Increasing evidence suggests that the cytoplasmic tail of membrane type 1 matrix metalloproteinase (MT1-MMP) is subject to phos pho ryl a tion and that this modification may influence its enzymatic activity at the cell surface. In this study, phos pho ryl a ted MT1-MMP is detected using a phospho-specific antibody recognizing a protein kinase C consensus sequence (phospho-TXR), and a MT1-MMP tail peptide is phos pho ryl a ted by exogenous protein kinase C. To characterize the potential role of cytoplasmic residue Thr567 in these processes, mutants that mimic a state of either constitutive (T567E) or defective phos pho ryl a tion (T567A) were expressed and analyzed for their functional effects on MT1-MMP activity and cellular behavior. Phospho-mimetic mutants of Thr567 exhibit enhanced matrix invasion as well as more extensive growth within a three-dimensional type I collagen matrix. Together, these findings suggest that MT1-MMP surface action is regulated by phos pho ryl a tion at cytoplasmic tail residue Thr567 and that this modification plays a critical role in processes that are linked to tumor progression
    corecore