484 research outputs found

    Identification, Geochemical Characterisation and Significance of Bitumen among the Grave Goods of the 7th Century Mound 1 Ship-Burial at Sutton Hoo (Suffolk, UK)

    Get PDF
    Acknowledgments: We would like to thank Antony Simpson for formatting the figures for publication. We are indebted to Dr Sonja Marzinzik and Dr Sue Brunning, former and current curators of the Department of Britain, Europe and Prehistory at the British Museum, for facilitating access to the Sutton Hoo finds. Carbon and hydrogen isotopic measurements were carried out by Iso-Analytical Limited. We are grateful to colleagues and others who read and commented on the manuscript in draft. Funding: This research was supported by funding from the European Commission Research Executive Agency (REA) via the Marie Curie Actions ā€“ Intra-European Fellowships for Career Development funding scheme (FP7-MC-IEF), Grant Agreement No. 253942, awarded to PB and RJS for project AMPT (Ancient Maritime Pitch and Tar: a multi-disciplinary study of sources, technology and preservation). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Peer reviewedPublisher PD

    Experimentally integrated dynamic modelling for intuitive optimisation of cell based processes and manufacture

    Get PDF
    Dynamic mechanistic modelling of cell culture is a key tool in bioprocess development to support optimisation and risk assessment. However, the approach is underutilised in the bioprocess industry due to challenges including lack of accessible tools to support a structured approach, the difficulty of realising computationally tractable (low parameter) yet realistic models, and the specialised skill sets required. We have proposed that these issues could be partly addressed by developing a parsimonious framework comprising a set of model building blocks, based on the ordinary differential equation modelling paradigm, representing common cell culture dynamics and modulation thereof. The framework is designed to avoid obvious pathological behaviours. Further, specific model instances within the framework can be simply visualised as a directed graph with vertices representing system species, dynamics and modulations, and arcs representing the interactions between them. The directed graph can be extended to describe the timing and nature of experimental interventions. A visual and intuitive route to describing models with an associated mathematical framework enables realisation in a software interface and integration with standard mathematical tools such as those for sensitivity analysis and parameter estimation. Such a framework is sufficient to represent some of the simple mechanisms underpinning bioprocesses that nonetheless lead to highly non-linear and counterintuitive outcomes. It also has a relatively low learning burden for users without formal mathematical training. The concept could be extended to include, for example, partial differential equation-based approaches to stochastic or spatially complex systems built up from a small number of parametrically parsimonious and well-behaved building blocks

    Mental Health Service Utilization before and after Receipt of a Serviceā€Connected Disability Award for PTSD: Findings from a National Sample

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/146624/1/hesr12859.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/146624/2/hesr12859-sup-0001-AppendixSA1.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/146624/3/hesr12859_am.pd

    Perovskite-perovskite tandem photovoltaics with optimized bandgaps

    Full text link
    We demonstrate four and two-terminal perovskite-perovskite tandem solar cells with ideally matched bandgaps. We develop an infrared absorbing 1.2eV bandgap perovskite, FA0.75Cs0.25Sn0.5Pb0.5I3FA_{0.75}Cs_{0.25}Sn_{0.5}Pb_{0.5}I_3, that can deliver 14.8 % efficiency. By combining this material with a wider bandgap FA0.83Cs0.17Pb(I0.5Br0.5)3FA_{0.83}Cs_{0.17}Pb(I_{0.5}Br_{0.5})_3 material, we reach monolithic two terminal tandem efficiencies of 17.0 % with over 1.65 volts open-circuit voltage. We also make mechanically stacked four terminal tandem cells and obtain 20.3 % efficiency. Crucially, we find that our infrared absorbing perovskite cells exhibit excellent thermal and atmospheric stability, unprecedented for Sn based perovskites. This device architecture and materials set will enable 'all perovskite' thin film solar cells to reach the highest efficiencies in the long term at the lowest costs

    Detection of opium alkaloids in a Cypriot base-ring juglet

    Get PDF
    A method has been developed for extracting poppy alkaloids from oily matrices, specifically lipid residues associated with archaeological ceramics. The protocol has been applied to fresh and artificially aged poppyseed oil and to residue from a Late Bronze Age Cypriot juglet in the collections of the British Museum. The juglet is of a type that has been linked with ancient trade in opium due to its poppy-head shape and wide distribution; it is a rare example of an intact vessel with contents sealed inside. Bulk analysis of the residue by GC-EI-MS and pyGC-EI-MS indicated a degraded plant oil and possible presence of papaverine. Analysis of the alkaloid extracts by HPLC-ESI-MS using both triple quadrupole and FTICR mass spectrometers detected the five primary opium alkaloids in fresh poppyseed oil and papaverine in most of the aged samples. Papaverine and thebaine were detected in the juglet residue, providing the first rigorous chemical evidence to support a link between this vessel type and opium, or at least poppies. The association of opium with oil raises new questions about the ancient purpose of the commodities within these vessels, and the low levels (ng gāˆ’1) of opiates detected in this unusually well-preserved residue shed doubt on the scope for their detection in more fragmentary ceramic remains (potsherds). Papaverine was found to exhibit challenging carryover behaviour in all the analytical methods used in this study. The phenomenon has not been reported before and should be considered in future analyses of this analyte in all application areas

    A Novel, Species-Specific, Real-Time PCR Assay for the Detection of the Emerging Zoonotic Parasite Ancylostoma Ceylanicum in Human Stool

    Get PDF
    Historically, Ancylostoma ceylanicum has been viewed as an uncommon cause of human hookworm infection, with minimal public health importance. However, recent reports have indicated that this zoonotic hookworm causes a much greater incidence of infection within certain human populations than was previously believed. Current methods for the species-level detection of A. ceylanicum rely on techniques that involve conventional PCR accompanied by restriction enzyme digestions. These PCR-based assays are not only labo- rious but they lack sensitivity as they target suboptimal regions on the DNA. As efforts aimed at the eradication of hookworm disease have grown substantially over the last decade, the need for sensitive and specific tools to monitor and evaluate programmatic successes has correspondingly escalated. Since a growing body of evidence suggests that patient responses to drug treatment can vary based upon the species of hookworm that is causing infection, accurate species-level diagnostics are advantageous. Accordingly, the novel real-time PCR-based assay described here provides a sensitive, species-specific diag- nostic tool that will facilitate the accurate mapping of disease endemicity and will aid in the evaluation of progress of programmatic deworming efforts

    Application of quality by design tools to upstream processing of platelet precursor cells to enable in vitro manufacture of blood products

    Get PDF
    Annually 4.5 million platelet units are transfused in Europe and the United States. These are obtained solely from allogeneic donations and have a shelf life of 5-7 days. To address the corresponding supply challenge, Moreau et al.1 devised a novel process for producing megakaryocytes (MKs, the platelet precursor cell) in vitro. A transcription-factor driven, forward-programming (FOP) approach converts human pluripotent stem cells into MKs. This strategy has the unique advantage of generating high yields of pure MKs in chemically defined medium which could lead to the production of a consistent, reliable supply of platelets which overcomes the logistical, financial and biosafety challenges for health organisations worldwide. Here we follow a Quality by Design (QbD) approach to enable improvements to the upstream processing of FOPMKs. Firstly, we created a process flow diagram for production of in vitro platelets for transfusion, which segregated processes into individual unit operations for control and optimisation. Next, we developed a Quality Target Product Profile (QTPP) and identified Critical Quality Attributes (CQAs) for each stage. We conducted a range of experiments utilising Design of Experiments (DOE) and mechanistic modelling2 tools to link Critical Process Parameters (CPPs) to CQAs. For adherent culture, we identified a productivity limit related to surface area available for growth and a cell loss phase which was dependent on cell seeding density, RhoK inhibitor usage and seed density. Using suspension cultures of FOPMK. We noted that TPO and Doxycycline concentration were CPPs as these impacted cell net growth rate and phenotype trajectory. Furthermore, we noted that medium exhaustion led to a 30% loss of viable cells over 8 hours. Proof of concept studies also showed that FOPMKs can be cultured in scaled-down suspension systems (ambr-15 and spinner flask culture) whilst retaining CQAs. 1. Moreau, T. et al. Large-scale production of megakaryocytes from human pluripotent stem cells by chemically defined forward programming. Nat. Commun. 7, 1ā€“15 (2016). 2. Stacey, A. J., Cheeseman, E. A., Glen, K. E., Moore, R. L. L. & Thomas, R. J. Experimentally integrated dynamic modelling for intuitive optimisation of cell-based processes and manufacture. Biochem. Eng. J. 132, 130ā€“138 (2018)

    Treatment Strategies Targeting Excess Hippocampal Activity Benefit Aged Rats with Cognitive Impairment

    Get PDF
    Excess neural activity in the CA3 region of the hippocampus has been linked to memory impairment in aged rats. We tested whether interventions aimed at reducing this excess activity would improve memory performance. Aged (24 to 28 months old) male Longā€“Evans rats were characterized in a spatial memory task known to depend on the functional integrity of the hippocampus, such that aged rats with identified memory impairment were used in a series of experiments. Overexpression of the inhibitory neuropeptide Y 13ā€“36 in the CA3 via adeno-associated viral transduction was found to improve hippocampal-dependent long-term memory in aged rats, which had been characterized with impairment. Subsequent experiments with two commonly used antiepileptic agents, sodium valproate and levetiracetam, similarly produced dose-dependent memory improvement in such aged rats. Improved spatial memory with low doses of these agents was observed in both appetitve and aversive spatial tasks. The benefits of these different modalities of treatment are consistent with the concept that excess activity in the CA3 region of the hippocampus is a dysfunctional condition that may have a key role underlying age-related impairment in hippocampal-dependent memory processes. Because increased hippocampal activation occurs in age-related memory impairment in humans as observed in functional neuroimaging, the current findings also suggest that low doses of certain antiepileptic drugs in cognitively impaired elderly humans may have therapeutic potential and point to novel targets for this indication
    • ā€¦
    corecore