
R

E
o

A
R
a

L
b

a

A
R
R
A
A

K
C
M
M
B
D
M

1

m
o
t
p
t
b
i
E

e
r

h
1

Biochemical Engineering Journal 132 (2018) 130–138

Contents lists available at ScienceDirect

Biochemical  Engineering  Journal

journa l homepage: www.e lsev ier .com/ locate /be j

egular  article

xperimentally  integrated  dynamic  modelling  for  intuitive
ptimisation  of  cell  based  processes  and  manufacture

drian  J.  Stacey a,b, Elizabeth  A.  Cheeseman a, Katie  E.  Glen a, Rebecca  L.L.  Moore a,
obert  J.  Thomas a,∗

Centre for Biological Engineering, Wolfson School of Mechanical and Manufacturing Engineering, Loughborough University, Loughborough, Leicestershire,
E11 3GR, UK
Advanced Bioprocess Design Ltd, 90 Main Street, East Leake, Loughborough, LE12 6 PG, UK

 r  t  i  c  l e  i  n  f  o

rticle history:
eceived 27 July 2017
eceived in revised form 4 December 2017
ccepted 10 January 2018
vailable online 10 January 2018

eywords:
ell therapy
anufacture
odel

ioprocess
ynamic
echanistic

a  b  s  t  r  a  c  t

Dynamic  mechanistic  modelling  of cell  culture  is a key  tool  in  bioprocess  development  to  support  opti-
misation  and  risk  assessment.  However,  the  approach  is  underutilised  in the  bioprocess  industry  due  to
challenges  including  lack  of  accessible  tools  to support  a structured  approach,  the  difficulty  of  realising
computationally  tractable  (low  parameter)  yet  realistic  models,  and  the  specialised  skill  sets  required.  We
have  proposed  that these  issues  could  be partly  addressed  by developing  a  parsimonious  framework  com-
prising  a set  of model  building  blocks,  based  on  the ordinary  differential  equation  modelling  paradigm,
representing  common  cell  culture  dynamics  and modulation  thereof.  The  framework  is  designed  to  avoid
obvious  pathological  behaviours.  Further,  specific  model  instances  within  the  framework  can  be  simply
visualised  as a directed  graph  with vertices  representing  system  species,  dynamics  and  modulations,
and  arcs  representing  the  interactions  between  them.  The  directed  graph  can  be  extended  to  describe
the  timing  and  nature  of experimental  interventions.  A  visual  and  intuitive  route  to describing  models
with  an  associated  mathematical  framework  enables  realisation  in  a software  interface  and  integration
with  standard  mathematical  tools  such  as  those  for sensitivity  analysis  and  parameter  estimation.  Such

a framework  is  sufficient  to  represent  some  of  the simple  mechanisms  underpinning  bioprocesses  that
nonetheless  lead  to  highly  non-linear  and  counterintuitive  outcomes.  It also  has  a  relatively  low  learning
burden  for  users  without  formal  mathematical  training.  The  concept  could  be  extended  to  include,  for
example,  partial  differential  equation-based  approaches  to stochastic  or  spatially  complex  systems  built
up from  a  small  number  of  parametrically  parsimonious  and  well-behaved  building  blocks.

© 2018  The  Authors.  Published  by Elsevier  B.V. This  is  an open  access  article  under  the  CC BY  license
. Introduction

Cell culture processes are a major element of manufacture in
any biologic and emerging cell-based therapies. The dynamics

f these processes, such as cell growth, consumption and produc-
ion rates, have long been recognised as important determinants of
rocess outcomes. For instance, in protein producing cell line cul-
ures, reduction of major nutrients and accumulation of metabolic

y-products such as ammonia and lactate can result in growth

nhibition, reduced culture viability, and altered product titre [1].
vidence is accumulating that newer cell-based products proposed
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(http://creativecommons.org/licenses/by/4.0/).

in the regenerative medicine field add further complexity. Cell-
released factors (identified or unidentified), metabolic substrate
availability, and metabolic by-products can have tissue specific
feedback relationships with lineage trajectory and growth rate, and
as such are likely to be highly product specific [2–4]. Each candi-
date process and product will require appropriate understanding,
description, and control of these dynamic relationships to achieve
product optimisation and robust process control [5,6].

Best practice of process development and optimisation, as artic-
ulated in structured approaches such as Quality by Design or Six
Sigma, has quantitative modelling at its heart [7]. In cell culture,
current models fall roughly into two camps, namely those that
empirically map  between process parameters and target outcomes

and those that consider the dynamics and mechanisms by which
process parameters affect process outcomes. Empirical mapping
treats the biological and experimental system as a “black box” and
thus provides limited process insight for risk assessment, extrapo-

nder the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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ation or hypothesis-based iterative development [8]. Further, due
o the complex and dynamic nature of the cell culture environment,
xperimental design or manufacturing conditions optimised for
ingle time points or across time intervals often fail when consid-
red over longer relevant time-courses. Conversely, a mechanistic
pproach entails the formulation and evaluation of hypotheses con-
erning the dynamics of the culture in terms of their consequences
or culture trajectory. Mathematical and mechanistic formalisation
f hypotheses concerning these dynamics represents the starting
oint effectively to link short time-scale dynamics with their con-
equences over a longer time-scale. There is increasing awareness,
articularly within cell therapy, that such process insight is criti-
al in diminishing risk in transfer to manufacture and in delivering
onsistent product quality [9,10].

Low parameter-count approaches of the empirical paradigm
exemplified by Design of Experiments) have been used exten-
ively to improve cell based manufacture processes, including for
ell therapies, facilitated by low-barrier and generic software tools
or experimental design and analysis [11–13]. The mechanistic
pproach is employed by specialist groups within academia to
lucidate biological systems and process knowledge, but appli-
ation within commercial process development remains sporadic
14–16]. Consequently the hypothesis-testing power, and precision
f hypothesis expression that mechanistic modelling enables, is sig-
ificantly under-utilised, particularly early in product and process
evelopment when teams or companies are small and resources
elatively limited. Reasons for restricted application include lack of
ow barrier turnkey tools and standardised workflows necessitating

 diverse skill-set covering both biological hypothesis development
nd specialist modelling techniques. The tendency therefore is for
he majority of biological experimentation and hypothesis testing,
r of mathematical modelling of biological systems, to proceed in

solation, or in a poorly integrated manner. The requirement to
ddress such deficiencies has been recognised in several technol-
gy road-mapping exercises such as that conducted by the National
ell Manufacturing Consortium [17].

We aim to facilitate wider application of dynamic mecha-
istic modelling by addressing the challenges that prevent the
evelopment of a broadly accessible turnkey software package for
echanistic cell process modelling. Such a package must (i) min-

mise mathematical knowledge required for model development
ii) enable precise articulation and interdisciplinary communica-
ion of population-dynamic hypotheses (iii) support development
f relevant and robust mathematical models and (iv) allow link-

ng of models to data from complex time-course experimentation
or verification. To achieve this we aimed to develop a conceptual
ramework and mathematical formulation that could facilitate the
xpression of a broad range of biological phenomena in a consis-
ent form and that could be conveniently expressed within a visual
software) interface to provide an intuitive bridge between bio-
ogical description of a dynamic system and precise mathematical
xpression thereof.

. Methods

.1. Model framework development

Many complex time-courses can be efficiently described within
n ordinary differential equation (ODE) modelling paradigm, in
hich the evolution of the system is described in terms of the

ependency of the rates of change of the system variables on

ther system variables or additional temporal factors. Within this
aradigm, mathematical expression of biological dynamics con-
entionally uses established functions, such as logistic and Monod
for macroscopic kinetics) and flux equations (microscopic kinet-
ing Journal 132 (2018) 130–138 131

ics) [16,18]. However, such formulations often conflate multiple
mechanisms, for example, in terms of growth and saturation, which
prevents straightforward reconfiguration to express a full range of
dynamic hypotheses. To address this we  developed a modelling
approach in which - by restricting the repertoire of mathematical
forms to a set of carefully chosen building blocks - the constituents
of a system, and the relationships between them can be expressed
intuitively, the former in terms of natural language, and the latter
in terms of directed graphs (digraphs). A digraph constitutes a sys-
tem of asymmetric relationships in which directional arrows (arcs)
define the relationships between points (vertices) that represent
the elements in an organisational structure. A secondary benefit of
a limited ODE approach is that it can be designed to ensure that ill-
formed or badly behaved model formulations are naturally avoided
(for example, those that would, under certain conditions, predict a
negative quantity of a necessarily positive system constituent), in
contrast to a naïve deployment of, for instance, flux equations.

From the perspective of a population or sub-population of cells
the bulk of these dynamics can be characterised as:

• population growth due to cell division
• population decline due to cell death, and
• concomitant decline of one population and growth of a second

due to interconversion of cells from one to the other, for example,
due to a phenotype change.

On an instantaneous time-frame, these dynamics can be approx-
imated as being essentially additive. In terms of the primary
modulators of population dynamics e.g. non-cell species within
the media or direct cell feedback, the number of general forms is
similarly small:

• production of a species by cells (such as a by-product of metabolic
activity or a signalling molecule such as a cytokine)

• consumption (or destruction) of a species by the cells
• species decay, and
• conversion from one species to another, for example due to cell

activity.

In the absence of further data during model formulation, each of
these dynamics can be assumed to take the simplest possible form
that avoids pathologies in the model, namely:

• cell growth:

dX

dt
= rX

where X is the cell density and r the (positive) specific growth rate

• decline of cell population or species:

dX

dt
= −rX

where X is cell density or species concentration and r the (positive)
specific decay rate

• interconversion of population or species:

dX

dt
= −rX
And

dY

dt
= rX
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here X and Y are the source and sink densities or concentrations
espectively, and r the positive specific interconversion rate

consumption or destruction of species:

dX

dt
= −rk

(k + X)

here X is species density or concentration, r is the maximum spe-
ific rate of consumption or destruction, and k determines the value
f X for which the consumption or destruction is half the value of r.

These dynamics may  themselves be modulated by secondary
actors. For example, cell growth may  be inhibited in the absence
f source nutrients or the presence of a growth inhibitor, cell
eath promoted by the presence of a toxin, species consumption
romoted by the presence or activity of the cells. There is broad
echanistic support for these modulations in the metabolic and

ell signalling literature; we propose the following main patterns
f modulation:

promotion when promoting factor has a threshold:

 = (1 − exp (a (X − b)))−1

here X is the density of the promoting factor (e.g. nutrients) and
 and b denote the sensitivity and threshold for promotion respec-
ively (a, b > 0);

promotion without the requirement for a threshold:

 = X(a + X)−1

here X is the density of the promoting factor (e.g. nutrients) and
 (a > 0) is the concentration to reach half maximum rate (that is,
onod kinetics);

inhibition:

 = 1 − (1 − exp (a (X − b)))−1

here X is the density of the inhibitory factor (e.g. metabolic by-
roducts) and a and b denote the sensitivity and threshold for

nhibition respectively;

optimality:

 = exp
(
−a(X − b)2)

here X is the density of the critical factor for optimal activity (e.g.
H) and a and b denote the sensitivity and optimum respectively.

By limiting the options for both dynamics and modulation,
odel pathologies are avoided. Alternative formulations would

nable the development of singularities; for example, if inhibi-
ion were expressed as M = X−a (a > 0); similarly, alternatives would
upport non-biological behaviour, such as driving nutrient concen-
ration negative if consumption were expressed simply as dX

dt =

aY where Y is the density of the consuming cells).

As a first approximation we consider a multiplicative relation-
hip between modulatory factors and associated dynamics. Noting
hat modulation may  depend either on the absolute system state
ing Journal 132 (2018) 130–138

or the rate of change thereof, this results in a general model of the
form:

dXi
dt

=
∑
j

(
Di,j (X)

∏
k

Mi,j,k

(
X,
dX

dt

))

where the vector X represents the current state of the entire system,
D the dynamics and M the modulator effects on these dynamics as
described above.

2.2. Model expression and manipulation

To reduce the mathematical skill barrier for model utilisation,
and hence broaden accessibility, it was  necessary to develop an
intuitive and common language method for model description. Due
to the decoupling of the various components, the general struc-
ture of the mathematical model can be expressed as a directed
graph (digraph) to visualise the relationships between the individ-
ual constituents (Fig. 1A). The vertices on the digraph represent
intuitively meaningful phenomena: species, dynamics and modu-
lation respectively (species can be used to denote a quantitative
component of a system, such as the cell density, the concentration
of some analyte or metabolite, or an abstraction of a bulk property
of the cells, such as average cell maturity). The arcs from vertex to
vertex correspond to interactions between these vertices. Predom-
inantly, these represent the association of a dynamic with a given
species (for example, a growth dynamic associated with cell den-
sity) and the association of a modulator with a given dynamic and
a given species on which it depends (for example, inhibition of cell
growth due to the presence of an inhibitor). Additional vertices are
required to indicate modulation that depends on a dynamic (for
example, the production of inhibitor at a rate related to the total
growth rate of the producing cells) and the species that results from
a conversion dynamic (for example, to indicate that the death of
cells results in the production of dead cells from live ones). The
digraph can naturally be extended to include experimental inter-
ventions, such as step changes in species, defined by a schedule and
the nature of the operation (Fig. 1A).

3. Results

3.1. Model development and evaluation

The general model can be used to express a wide array of spe-
cific mechanistic hypotheses which can be visualised as digraphs.
A very simple example is a system in which cells constitutively
produced an autocrine growth inhibitor; this model may be suf-
ficient where the precursor of a metabolic inhibitor is saturating
with respect to production of the inhibitor (such as glucose with
respect to lactate in high glucose medium [19]), or an inhibitory
cytokine is stably produced (Fig. 1B) [20]. An alternative configura-
tion exemplifies a more complex system where a cell-produced
species is involved in an autocrine survival loop, and a further
extrinsic cytotoxic species is also present. This is similar to TNFa
mediated survival and cytotoxic resistance in certain cell lines [21].
In this example we have further proposed that production of the
survival species is also dependent on cell population growth rate,
and the non-viable cells have a constant decay rate to remove
from the system (Fig. 1C). Multiple further reconfigurations could
be envisaged to introduce further hypothetical mechanisms such
as growth inhibition in addition to cell death, further modulating
species, or to describe nuances of mechanism such as promotion of

growth as opposed to promotion of survival.

The digraph lends itself to straightforward presentation on a
user interface (Fig. 2A). In this example, we  show a further hypo-
thetical model which incorporates two subpopulations of cells,
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Fig. 1. Expression of general model structure in visual form. A) The model can be considered a directed graph (digraph), with the vertices corresponding to Species (orange),
Dynamics (pink) or Modulators (green), and the arrows (arcs) to interactions between the vertices. Arrows denote the asymmetry between linked vertices: the arrow points
to  the affected and from the driving vertex. The digraph can naturally be extended to include experimental interventions (blue) B) An illustration of a specific instance of the
general  model corresponding to a system where cells constitutively produce an inhibitor which suppresses their own growth (e.g. cytokine-mediated feedback inhibition).
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)  An exemplar description of a more complex model (akin to autocrine mediated
escribe  a scheduled point-dilution of the survival factor (e.g. media change) repr
olour in this figure legend, the reader is referred to the web version of this article.)

hereby progenitor cells divide asymmetrically to produce a new
ersion of the parent and a more mature lineage committed cell,
hich in turn produces an inhibitory cytokine which restricts the

rowth of the progenitors. This has parallels to negative feedback
oops observed in multiple relevant systems e.g. haematopoietic
tem cell expansion or caspase mediated inhibition of immature
rythroblasts by more mature erythroblasts [2,22]. This results in
n initial increase in progenitor population (growth of progenitors
xceeds conversion to mature cells) followed by a decline (con-
ersion to mature cells exceeds growth of progenitors due to the
roduction of a cytokine that inhibits progenitor growth) (Fig. 2B).
he vertices can be manipulated by the user to enable parame-
erisation of the model, and arcs created or removed to provide
he appropriate interactions between these vertices, or to spec-
fy experimental or operational interventions (Fig. 2A). The close
elationship between system conceptualisation and user inter-
ace representation expedites model development and exploration,

aking it natural for the user to ask “what if” questions and
onsider alternative hypotheses around system behaviour. This
epresentation therefore constitutes a graphical but precise lan-
uage by means of which key system dynamic concepts can be
rticulated.

.2. Experimental intervention

Intervention in a biological culture system, via operations such
s media exchange, dilution or cell sorting, is commonly used to
est hypotheses of underlying mechanisms. Such interventions are
lso common to many production processes. The modelling frame-
ork proposed enables easy visualisation of a broad range of such

nterventions by a small extension to the digraph, in which inter-

entions are associated with a schedule (to indicate when they
ccur) and the affected species (Figs. 1C, 2A). By allowing inter-
entions of this kind to be integrated, the modelling framework
nables the user the flexibility to describe and investigate in silico
rvival with an extrinsic cytotoxic factor) including an extension of the digraph to
ng a step change in the media properties. (For interpretation of the references to

possible experimental protocols for testing diverse hypotheses or
simulating specific process operation (Fig. 2C). From a mathemati-
cal perspective, the formulation of such interventions is selected to
avoid model pathologies such as those that would potentially drive
variables negative for poorly chosen parameters:

• dilution:

X → aX + (1 − a)b

where a (0 ≤ a ≤ 1) is the proportion of the original media or cell
population that remains, and b the concentration or density in the
replacement (b ≥ 0);

• reset:

X → b

where b is the new cell density or species concentration (b ≥ 0).

3.3. Model application for experimental design and process
optimisation

Due to the ease with which digraphs can be presented to, and
manipulated by, users in the context of a piece of software, it is
straightforward to realise this framework as a software tool. In
conjunction with well-established numerical techniques for opti-
misation and sensitivity analysis, this provides a rapid conduit from
model articulation to optimisation with respect to a production
goal. Further, experimental design aimed at accurately estimating
model parameters is facilitated by, for example, sensitivity analy-

sis of process values with respect to both model parameters and
experimental interventions.

Using the mature cell-progenitor negative feedback model as an
exemplar we  can show how important process decisions pertaining
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Fig. 2. The digraph method for describing mechanistic hypotheses can simply be incorporated into an interface A) Illustrates the model structure described in a graphical user
interface to manipulate the model system; in this instance a progenitor species has a growth dynamic and also a conversion to a more mature phenotype. The mature cells
produce an inhibitor which suppresses the growth rate of the progenitors leading to maturation. An experimental intervention is also specified with removal of all inhibitor
a he y a
t e same
a

t
n
p
m

t  40 h B) A typical model trajectory, without an experimental intervention, with t
he  inhibitor, and the size of the points the density of product C) The trajectory of th
t  40 h.

o optimisation can be identified. In this system, cytokine-mediated
egative feedback suppresses the bulk up of progenitors in the

resence of mature cells, and the productivity of a volume of
edium is therefore determined by the accumulation of inhibitory
xis denoting the density of progenitor cells, the line darkness the concentration of
 model with the specified experimental intervention of complete inhibitor dilution

cytokines. Mathematically the specific instance of the general
model described in 2.1 is:
dS

dt
= rg

(1 + exp (a (I − b)))
− rcS
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Fig. 3. Models can be used to identify optimal process operation. Using the inhibitory feedback model (described in Fig. 2) with the addition of a mature cell product death
dynamic as an exemplar, optimal harvest and dilution time for maximum mature product yield is shown given a 25% (A, B) and 75% (C, D) medium exchange and death rates
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f  mature product of 0.1 (A, C) and 0.2 (B, D). Units are arbitrary. The dynamics of t
f  the harvest time space would lead to very poor estimations of optima from an un

dP

dt
= rcS − rdP

dI

dt
= rpP

escribing the evolution of Progenitor Density (S), Product Density
P) and Inhibitor Concentration (I) over time, where rg is growth
ate, rc conversion rate from progenitor to product, rd product death
ate, rp production rate of inhibitor, a is inhibitor sensitivity and b
nhibitor threshold.

By reducing the concentration of such cytokines by a media dilu-
ion, there is the potential to increase volumetric productivity. Two
ey parameters, namely, the timing of media dilution and harvest of
ature cells, determine the efficacy of this strategy. The modelling

pproach described here allows the user to explore the sensitivity
f the volumetric productivity to these parameters, and in par-
icular to identify targeted experiments to optimise the process.
s an example of the former, the optimal combination of dilu-

ion time and mature product harvest time for maximum mature

ell yield can be visualised for different proportions of medium
xchange given different underlying death rates of mature cells
Fig. 3). Due to the highly non-linear nature of the system, a Design
f Experiments approach would fail to find the optimum without
tem lead to a large degree of non-linearity; insensitivity to dilution time for much
ed Design of Experiment type approach.

a considerable amount of experimentation; the class of mechanis-
tic models described here enables a more directed and informed
exploration of parameter space.

System sensitivity to driving mechanisms is critical in assessing
process risk and opportunities for process improvement. A Monte
Carlo simulation of the mature cell-progenitor negative feedback
model described can be used to assess the sensitivity of its con-
stituent and output species (inhibitor, progenitor cell, and mature
cell product concentrations) over a culture time course to variabil-
ity in model driving parameters (rates of growth, death, production,
conversion and the modulating effect of the cytokine inhibitor). For
the purpose of example, model parameters were selected using a
growth rate reported in an erythroblast culture system, with other
parameters selected to generate a base case model with a duration
to terminal maturation of approximately 2 weeks [23] (initial pro-
genitor density 1e5 cells mL−1, growth rate rg = 0.05 h−1, conversion
rate rc = 0.035 h−1, product death rate rd = 0.05 h−1, production rate
of inhibitor rp = 1e-5 cells−1, inhibitor sensitivity a = 0.1, threshold
inhibitor concentration b = 50). Sensitivity was assessed by deter-
mining the standard deviation in the variable of interest (cells,
inhibitor) that results from a normal distribution in the driving

parameters with a standard deviation 10% of the base case param-
eter value (Fig. 4). The sensitivities clearly differ from variable to
variable and in a nonlinear fashion both temporally and in terms
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Fig. 4. Models can be used to identify process sensitivities. A and B show, for an illustrative base case of the hypothetical model parameterised to reflect the time course of
an  erythroblast proliferation and differentiation process reported in the literature, the time-courses of progenitor density (red), mature product density (blue) and total cell
density  (black) (t = time(days), SD = Standard Deviation); C show the corresponding inhibitor concentration time-course. Media exchange (without cell density reduction)
provides dilution of inhibitor every second day (dilution factor dilAmt = 0.5) starting at day 5 (dil = 120 h). The areas in D, E and F show the sensitivity of, respectively,
progenitor density, product density and inhibitor concentration to the driving parameters over time, measured as the standard deviation in the variable of interest that
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esults  from a normal distribution with standard deviation 0.1 in the driving param
egend, the reader is referred to the web version of this article.)

f the driving variable in question. Some illustrative aspects of
hese trajectories are as follows: (a) Progenitor and product sen-
itivity to growth rate align with the underlying trajectories as the
rowth dominates early during the culture and the ratio of growth
ate to inhibitory effects becomes increasingly important as cul-
ure progresses. There are peaks in progenitor sensitivity to growth
ate coinciding with dilution events, corresponding to release from
nhibition during these periods, but these effects are temporally
elayed and dispersed for product. (b) Death of product has an
ffect on progenitors only by means of modulating product density
nd hence inhibitor production; its effect is transitory as the sys-
em regulates itself due to the inhibitor-mediated feedback effect
f product on progenitors. Consequently effect on product is mini-
al. (c) The sensitivity to proportion of dilution develops after peak

rogenitor density for both, but its effect after this point remains
elatively constant due to the self-regulating nature of the system.
hese profiles are highly non-linear, and not straightforward to
redict without a formal mechanistic modelling approach. Such an
pproach is therefore powerful in identifying candidates for process
ptimisation or aspects of the system where control is critical.
. Discussion

We  have developed a modelling framework focussed on cell
ased processes for rapid model development and application.
elative to the base case. (For interpretation of the references to colour in this figure

The framework comprises a mathematical formalisation repre-
senting common cell culture dynamics that decouples aspects of
the system thereby enabling compatibility with an intuitive inter-
face. The restricted model building blocks aim to achieve the
necessary trade-off between computationally tractable yet realis-
tic models [14]. Digraphs provide a visual framework that simply
supports expression of mechanistic hypotheses without requiring
detailed knowledge of the mathematics involved. These elements
are amenable to implementation in a software tool and integra-
tion with established methods for model solving and exploration.
This approach bridges the gap between biology and modelling,
which, for many practical applications such as cell processing (out-
side specialist fields such as systems biology), exist in two distinct
skill sets without a widely shared language. The approach has
promise for addressing several previously identified barriers to
wider implementation of mechanistic modelling: support for sys-
tematic development of models following a best practice stepwise
path of building, parameterisation and analysis [24,25]. Specifically
it could support a structured and formalised approach from pro-
posal of a biological system (hypothesis), through experimental
design, expression as a digraph, conversion to ODE  form, solution

and analysis.

There are a number of evident benefits of such an approach to
a biological or interdisciplinary team working with cell based pro-
cesses. Mechanistic modelling, in contrast to a purely statistical (or
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escriptive) approach such as DoE, provides greater process insight
nd therefore potential for rational determination of areas of pro-
ess risk or to target for process optimisation [14]. It also enables
ore freedom in experimental design and source data allowing

 user to explore (and develop) alternate models and parame-
erisation in a less restricted manner based on existing system
nowledge. Further, this freedom enables data from experiments
esigned and conducted in tandem with a modelling approach
o be scavenged and used to identify or refine critical process
ynamic parameters. This latter point is of particular value as it
ffers the potential for maximising the process knowledge returned
rom investment in experimentation during early process devel-
pment which will often target a spectrum of process issues (e.g.
edia formulation, unit operation optimisation and macro-scale

rocess development) but may  not conform to a consistent design.
lthough these benefits are common to an ODE based mecha-
istic modelling approach, the framework we describe greatly
educes the barrier to realisation. The digraph model descrip-
ion is designed to enhance interdisciplinary team communication
nd encourage exploration of alternative hypotheses. The intuitive
tructure of the digraphs supports rapid formulation, mathemat-
cal formalisation and testing of multiple hypotheses. By limiting
he repertoire of functional forms included in the framework, the
ser is to some degree protected from pathological model formu-

ations; the framework itself embodies an amount of modelling
xpertise. Experimental simulation in silico can quickly contribute
o improved experimental design, particularly where partial sys-
em knowledge exists (eg approximate growth rates) [26,27]. The
et effect is to streamline the process of formal articulation of bio-

ogical phenomena, and thereby provide the potential to capitalise
etter on the power of modelling including robust exploration of
lternative hypotheses, system optimisation and sensitivity analy-
is. The business and clinical impact of this will be improved design
pace understanding, associated risk-analyses and science-based
egulatory submissions [9].

The approach we have developed builds on a rich heritage of
athematical modelling in earlier biological and bio-industrial

ystems. Modelling of biological growth developed from the recog-
ition that external environmental forces impose limits on growth
nd that this can be represented by the logistic model. Multiple
ubsequent modifications of the logistic model were devel-
ped to account for e.g. specific environmental/organism growth

imitations, specific product harvesting scenarios, or metabolic
odulation i.e. Chapman-Richards. Other modifications such as

he Gompertz or Gomp-ex model have created various asymme-
ries in the asymptotes at either end of the curve (to account,
or example, for lag phase). Other specific case models have been
eveloped i.e. the Monod equation to represent substrate depen-
ent growth. In each of these a specific modification has been

ntroduced based on a hypothetical or known insight into growth
ynamics to increase the ability to represent real world growth
ehaviour; comparisons of these variants are frequently conducted
o choose growth models for specific systems, and software has
een developed to support selection from alternatives [28–30].
owever, the various logistic model modifications are limited to

rude approximation of multiple mechanisms to represent growth,
ith no simple route to unpack mechanisms if required to rep-

esent more complex system behaviour. Recently there has been
ignificant work generating more elaborate ODE models describ-
ng metabolic processes and their relationships to cell growth or
rotein productivity. These approaches are partially mechanistic
nd biologically structured models, often incorporating the con-

ept of compartments where multiple similar reaction rates may
e combined to simplify the model. These models offer more mech-
nistic insight into the drivers of system behaviour and, once
tructured, can be parameterised with relatively limited experi-
ing Journal 132 (2018) 130–138 137

mental data therefore lending themselves to semi-automated serial
application across different bio-production systems [31,32]. How-
ever, the relatively elaborate ODE frameworks remain specific
to the described metabolic processes and do not offer flexibil-
ity to simply incorporate other growth influences or population
complexity. Our framework recognises the value in industrial bio-
process of a compartmental approach for cost effective model
development, and the advantage of a biologically informed model
structure, however retains the freedom to create a wide array of
different model structures within constraints that protect from
obvious modelling pathologies. A researcher may, for instance,
start with something close to an existing logistic model, but can
simply combine elements such as additional growth dynamics,
key metabolic influences and population transitions, developing
the level of compartmentalisation as required for the process at
hand. This flexibility is valuable for cell based therapy processes
where culture knowledge is limited relative to earlier bio-industrial
applications and a framework is required for exploring alternative
mechanisms and determining the best structure (and compartmen-
talisation) to deal with these types of processes. This represents a
research and development stepping stone to generic model forms
tailored for the cell therapy field offering standardised experi-
mental design for rapid parameterisation of models describing
proliferation, differentiation, and product generation.

The twin goals of achieving both wide user accessibility and
the capability to model sufficient phenomena for broad application
across biological systems create a tension between an extended
model library underlying the interface and a minimised learn-
ing burden for users. The ODE-system approach to expressing
dynamics, with non-linear model components which can be com-
posited in a straightforward manner, can describe a range of
important biological dynamics related to cell culture (e.g. growth,
death, and interconversion of both non-cell and cell species) and
thereby support the modelling of a broad range of processes (e.g.
maturation, cytokine-mediated inhibition, lineage commitment)
without incurring model pathologies. Our relatively parsimonious
ODE framework constitutes one amongst a number of broadly
mechanistic approaches; it is, however, particularly appropriate
to well-mixed systems that are relatively challenging to char-
acterise analytically. Partial differential equation extensions to
this approach could handle spatial heterogeneity efficiently (e.g.
reaction-advection-diffusion equations [33]), evolution of prob-
ability distributions describing system state [34], and migration
of populations through lineage space [35]. In all these cases,
the degrees of model freedom is much greater and as such a
more extensive data set would be required for fitting or test-
ing. The same applies for more complex systems models, such
as highly-parameterised network models or those addressable
by biologically-targeted modelling languages (e.g. SBML) [36].
A broader modelling framework will provide a greater expres-
siveness [37]; however, the disadvantage of this is increased
time investment in appropriating such frameworks, and the far
larger modelling knowledge required to avoid pathological model
behaviour and promote selection of appropriate model structures.
In practice the approach we have taken here could be extended
into these domains, by developing parallel approaches whereby
stochastic or spatially complex systems can be built up from a small
number of parametrically parsimonious and well-behaved building
blocks.
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