109 research outputs found

    Structure–function relationships of the peptide Paulistine: A novel toxin from the venom of the social wasp Polybia paulista

    Get PDF
    AbstractBackgroundThe peptide Paulistine was isolated from the venom of wasp Polybia paulista. This peptide exists under a natural equilibrium between the forms: oxidised — with an intra-molecular disulphide bridge; and reduced — in which the thiol groups of the cysteine residues do not form the disulphide bridge. The biological activities of both forms of the peptide are unknown up to now.MethodsBoth forms of Paulistine were synthesised and the thiol groups of the reduced form were protected with the acetamidemethyl group [Acm-Paulistine] to prevent re-oxidation. The structure/activity relationships of the two forms were investigated, taking into account the importance of the disulphide bridge.ResultsPaulistine has a more compact structure, while Acm-Paulistine has a more expanded conformation. Bioassays reported that Paulistine caused hyperalgesia by interacting with the receptors of lipid mediators involved in the cyclooxygenase type II pathway, while Acm-Paullistine also caused hyperalgesia, but mediated by receptors involved in the participation of prostanoids in the cyclooxygenase type II pathway.ConclusionThe acetamidemethylation of the thiol groups of cysteine residues caused small structural changes, which in turn may have affected some physicochemical properties of the Paulistine. Thus, the dissociation of the hyperalgesy from the edematogenic effect when the actions of Paulistine and Acm-Paulistine are compared to each other may be resulting from the influence of the introduction of Acm-group in the structure of Paulistine.General significanceThe peptides Paulistine and Acm-Paulistine may be used as interesting tools to investigate the mechanisms of pain and inflammation in future studies

    Multicenter study of the natural history and therapeutic responses of patients with chikungunya, focusing on acute and chronic musculoskeletal manifestations - a study protocol from the clinical and applied research in Chikungunya (REPLICK network)

    Get PDF
    BACKGROUND: Chikungunya is associated with high morbidity and the natural history of symptomatic infection has been divided into three phases (acute, post-acute, and chronic) according to the duration of musculoskeletal symptoms. Although this classification has been designed to help guide therapeutic decisions, it does not encompass the complexity of the clinical expression of the disease and does not assist in the evaluation of the prognosis of severity nor chronic disease. Thus, the current challenge is to identify and diagnose musculoskeletal disorders and to provide the optimal treatment in order to prevent perpetuation or progression to a potentially destructive disease course. METHODS: The study is the first product of the Clinical and Applied Research Network in Chikungunya (REPLICK). This is a prospective, outpatient department-based, multicenter cohort study in Brazil. Four work packages were defined: i. Clinical research; ii) Translational Science - comprising immunology and virology streams; iii) Epidemiology and Economics; iv) Therapeutic Response and clinical trials design. Scheduled appointments on days 21 (D21) ± 7 after enrollment, D90 ± 15, D120 ± 30, D180 ± 30; D360 ± 30; D720 ± 60, and D1080 ± 60 days. On these visits a panel of blood tests are collected in addition to the clinical report forms to obtain data on socio-demographic, medical history, physical examination and questionnaires devoted to the evaluation of musculoskeletal manifestations and overall health are performed. Participants are asked to consent for their specimens to be maintained in a biobank. Aliquots of blood, serum, saliva, PAXgene, and when clinically indicated to be examined, synovial fluid, are stored at -80° C. The study protocol was submitted and approved to the National IRB and local IRB at each study site. DISCUSSION: Standardized and harmonized patient cohorts are needed to provide better estimates of chronic arthralgia development, the clinical spectra of acute and chronic disease and investigation of associated risk factors. This study is the largest evaluation of the long-term sequelae of individuals infected with CHIKV in the Brazilian population focusing on musculoskeletal manifestations, mental health, quality of life, and chronic pain. This information will both define disease burden and costs associated with CHIKV infection, and better inform therapeutic guidelines

    Biosensors for efficient diagnosis of Leishmaniasis: innovations in bioanalytics for a neglected disease

    Get PDF
    The need for reliable, fast diagnostics is closely linked to the need for safe, effective treatment of the so-called “neglected” diseases. The list of diseases with no field-adapted diagnostic tools includes leishmaniasis, shigella, typhoid, and bacterial meningitis. Leishmaniasis, in particular, is a parasitic disease caused by Leishmania spp. transmitted by infected phlebotomine sandfly, which remains a public health concern in developing countries with ca. 12 million people infected and 350 million at risk of infection. Despite several attempts, methods for diagnosis are still noneffective, especially with regard to specificity due to false positives with Chagas’ disease caused by Trypanosoma cruzi. Accepted golden standards for detecting leishmaniasis involve isolation of parasites either microscopically, or by culture, and in both methods specimens are obtained by invasive means. Here, we show that efficient distinction between cutaneous leishmaniasis and Chagas’ disease can be obtained with a low-cost biosensor system made with nanostructured films containing specific Leishmania amazonensis and T. cruzi antigens and employing impedance spectroscopy as the detection method. This unprecedented selectivity was afforded by antigen−antibody molecular recognition processes inherent in the detection with the immobilized antigens, and by statistically correlating the electrical impedance data, which allowed distinction between real samples that tested positive for Chagas’ disease and leishmaniasis. Distinction could be made of blood serum samples containing 10−5 mg/mL of the antibody solution in a few minutes. The methods used here are generic and can be extended to any type of biosensor, which is important for an effective diagnosis of many other diseases.FAPESPCNPqCAPE

    Evaluation of an Antimicrobial L-Amino Acid Oxidase and Peptide Derivatives from Bothropoides mattogrosensis Pitviper Venom

    Get PDF
    Healthcare-associated infections (HAIs) are causes of mortality and morbidity worldwide. The prevalence of bacterial resistance to common antibiotics has increased in recent years, highlighting the need to develop novel alternatives for controlling these pathogens. Pitviper venoms are composed of a multifaceted mixture of peptides, proteins and inorganic components. L-amino oxidase (LAO) is a multifunctional enzyme that is able to develop different activities including antibacterial activity. In this study a novel LAO from Bothrops mattogrosensis (BmLAO) was isolated and biochemically characterized. Partial enzyme sequence showed full identity to Bothrops pauloensis LAO. Moreover, LAO here isolated showed remarkable antibacterial activity against Gram-positive and -negative bacteria, clearly suggesting a secondary protective function. Otherwise, no cytotoxic activities against macrophages and erythrocytes were observed. Finally, some LAO fragments (BmLAO-f1, BmLAO-f2 and BmLAO-f3) were synthesized and further evaluated, also showing enhanced antimicrobial activity. Peptide fragments, which are the key residues involved in antimicrobial activity, were also structurally studied by using theoretical models. The fragments reported here may be promising candidates in the rational design of new antibiotics that could be used to control resistant microorganisms

    Essential oils of leaves of Piper species display larvicidal activity against the dengue vector, Aedes aegypti (Diptera: Culicidae)

    No full text
    The mosquito Aedes aegypti is the vector of the dengue virus, an endemic arbovirus from tropical and subtropical regions of the world. The increasing resistance of mosquitoes to commercial insecticides impairs regular control programs; therefore, chemical prospecting originating from the Amazonian flora is promising for potential new insecticides. Several Piper species are, notably, rich in phenylpropanoids and terpenoids, substances with proven insecticidal activity. The composition and the larvicidal activity of three Piper species against A. aegypti were evaluated. Essential oils were extracted by hydrodistillation in a modified Clevenger apparatus and analyzed by GC/MS. The major components found in Piper arboreum were germacrene D (31.83%) and bicyclogermacrene (21.40%); in Piper marginatum: (E)-methyl isoeugenol (27.08%), (E)-anethole (23.98%) and (Z)-methyl isoeugenol (12.01%); and in Piper aduncum: (E)-isocroweacin (29.52%) and apiole (28.62%) and elemicin (7.82%). Essential oils from the Piperaceae species studied resulted in Lethal Concentrations (LC50) of 34-55 ppm, while LC90 was higher than 100 ppm, except for P. marginatum (85 ppm)
    corecore