1,226 research outputs found

    Cas3 Protein—A Review of a Multi-Tasking Machine

    Get PDF
    Cas3 has essential functions in CRISPR immunity but its other activities and roles, in vitro and in cells, are less widely known. We offer a concise review of the latest understanding and questions arising from studies of Cas3 mechanism during CRISPR immunity, and highlight recent attempts at using Cas3 for genetic editing. We then spotlight involvement of Cas3 in other aspects of cell biology, for which understanding is lacking—these focus on CRISPR systems as regulators of cellular processes in addition to defense against mobile genetic element

    Transmission of mitochondrial DNA following assisted reproduction and nuclear transfer

    Get PDF
    Review of the articleMitochondria are the organelles responsible for producing the majority of a cell's ATP and also play an essential role in gamete maturation and embryo development. ATP production within the mitochondria is dependent on proteins encoded by both the nuclear and the mitochondrial genomes, therefore co-ordination between the two genomes is vital for cell survival. To assist with this co-ordination, cells normally contain only one type of mitochondrial DNA (mtDNA) termed homoplasmy. Occasionally, however, two or more types of mtDNA are present termed heteroplasmy. This can result from a combination of mutant and wild-type mtDNA molecules or from a combination of wild-type mtDNA variants. As heteroplasmy can result in mitochondrial disease, various mechanisms exist in the natural fertilization process to ensure the maternal-only transmission of mtDNA and the maintenance of homoplasmy in future generations. However, there is now an increasing use of invasive oocyte reconstruction protocols, which tend to bypass mechanisms for the maintenance of homoplasmy, potentially resulting in the transmission of either form of mtDNA heteroplasmy. Indeed, heteroplasmy caused by combinations of wild-type variants has been reported following cytoplasmic transfer (CT) in the human and following nuclear transfer (NT) in various animal species. Other techniques, such as germinal vesicle transfer and pronuclei transfer, have been proposed as methods of preventing transmission of mitochondrial diseases to future generations. However, resulting embryos and offspring may contain mtDNA heteroplasmy, which itself could result in mitochondrial disease. It is therefore essential that uniparental transmission of mtDNA is ensured before these techniques are used therapeutically

    Calibration of myocardial T2 and T1 against iron concentration.

    Get PDF
    BACKGROUND: The assessment of myocardial iron using T2* cardiovascular magnetic resonance (CMR) has been validated and calibrated, and is in clinical use. However, there is very limited data assessing the relaxation parameters T1 and T2 for measurement of human myocardial iron. METHODS: Twelve hearts were examined from transfusion-dependent patients: 11 with end-stage heart failure, either following death (n=7) or cardiac transplantation (n=4), and 1 heart from a patient who died from a stroke with no cardiac iron loading. Ex-vivo R1 and R2 measurements (R1=1/T1 and R2=1/T2) at 1.5 Tesla were compared with myocardial iron concentration measured using inductively coupled plasma atomic emission spectroscopy. RESULTS: From a single myocardial slice in formalin which was repeatedly examined, a modest decrease in T2 was observed with time, from mean (± SD) 23.7 ± 0.93 ms at baseline (13 days after death and formalin fixation) to 18.5 ± 1.41 ms at day 566 (p<0.001). Raw T2 values were therefore adjusted to correct for this fall over time. Myocardial R2 was correlated with iron concentration [Fe] (R2 0.566, p<0.001), but the correlation was stronger between LnR2 and Ln[Fe] (R2 0.790, p<0.001). The relation was [Fe] = 5081•(T2)-2.22 between T2 (ms) and myocardial iron (mg/g dry weight). Analysis of T1 proved challenging with a dichotomous distribution of T1, with very short T1 (mean 72.3 ± 25.8 ms) that was independent of iron concentration in all hearts stored in formalin for greater than 12 months. In the remaining hearts stored for <10 weeks prior to scanning, LnR1 and iron concentration were correlated but with marked scatter (R2 0.517, p<0.001). A linear relationship was present between T1 and T2 in the hearts stored for a short period (R2 0.657, p<0.001). CONCLUSION: Myocardial T2 correlates well with myocardial iron concentration, which raises the possibility that T2 may provide additive information to T2* for patients with myocardial siderosis. However, ex-vivo T1 measurements are less reliable due to the severe chemical effects of formalin on T1 shortening, and therefore T1 calibration may only be practical from in-vivo human studies

    Evaluation of the benefits, harms and cost‐effectiveness of potential alternatives to iFOBT testing for colorectal cancer screening in Australia

    Get PDF
    The Australian National Bowel Cancer Screening Program (NBCSP) will fully roll‐out 2‐yearly screening using the immunochemical Faecal Occult Blood Testing (iFOBT) in people aged 50 to 74 years by 2020. In this study, we aimed to estimate the comparative health benefits, harms, and cost‐effectiveness of screening with iFOBT, versus other potential alternative or adjunctive technologies. A comprehensive validated microsimulation model, Policy1‐Bowel, was used to simulate a total of 13 screening approaches involving use of iFOBT, colonoscopy, sigmoidoscopy, computed tomographic colonography (CTC), faecal DNA (fDNA) and plasma DNA (pDNA), in people aged 50 to 74 years. All strategies were evaluated in three scenarios: (i) perfect adherence, (ii) high (but imperfect) adherence, and (iii) low adherence. When assuming perfect adherence, the most effective strategies involved using iFOBT (annually, or biennially with/without adjunct sigmoidoscopy either at 50, or at 54, 64 and 74 years for individuals with negative iFOBT), or colonoscopy (10‐yearly, or once‐off at 50 years combined with biennial iFOBT). Colorectal cancer incidence (mortality) reductions for these strategies were 51–67(74–80)% in comparison with no screening; 2‐yearly iFOBT screening (i.e. the NBCSP) would be associated with reductions of 51(74)%. Only 2‐yearly iFOBT screening was found to be cost‐effective in all scenarios in context of an indicative willingness‐to‐pay threshold of A50,000/lifeyearsaved(LYS);thisstrategywasassociatedwithanincrementalcosteffectivenessratioofA50,000/life‐year saved (LYS); this strategy was associated with an incremental cost‐effectiveness ratio of A2,984/LYS–A$5,981/LYS (depending on adherence). The fully rolled‐out NBCSP is highly cost‐effective, and is also one of the most effective approaches for bowel cancer screening in Australia

    Quantification of cerebral blood flow in adults by contrast-enhanced near-infrared spectroscopy: Validation against MRI

    Get PDF
    The purpose of this study was to assess the accuracy of absolute cerebral blood flow (CBF) measurements obtained by dynamic contrast-enhanced (DCE) near-infrared spectroscopy (NIRS) using indocyanine green as a perfusion contrast agent. For validation, CBF was measured independently using the MRI perfusion method arterial spin labeling (ASL). Data were acquired at two sites and under two flow conditions (normocapnia and hypercapnia). Depth sensitivity was enhanced using time-resolved detection, which was demonstrated in a separate set of experiments using a tourniquet to temporally impede scalp blood flow. A strong correlation between CBF measurements from ASL and DCE-NIRS was observed (slope = 0.99 ± 0.08, y-intercept = −1.7 ± 7.4 mL/100 g/min, and R2 = 0.88). Mean difference between the two techniques was 1.9 mL/100 g/min (95% confidence interval ranged from −15 to 19 mL/100g/min and the mean ASL CBF was 75.4 mL/100 g/min). Error analysis showed that structural information and baseline absorption coefficient were needed for optimal CBF reconstruction with DCE-NIRS. This study demonstrated that DCE-NIRS is sensitive to blood flow in the adult brain and can provide accurate CBF measurements with the appropriate modeling techniques

    Biopsy-based calibration of T2* magnetic resonance for estimation of liver iron concentration and comparison with R2 Ferriscan.

    Get PDF
    BACKGROUND: There is a need to standardise non-invasive measurements of liver iron concentrations (LIC) so clear inferences can be drawn about body iron levels that are associated with hepatic and extra-hepatic complications of iron overload. Since the first demonstration of an inverse relationship between biopsy LIC and liver magnetic resonance (MR) using a proof-of-concept T2* sequence, MR technology has advanced dramatically with a shorter minimum echo-time, closer inter-echo spacing and constant repetition time. These important advances allow more accurate calculation of liver T2* especially in patients with high LIC. METHODS: Here, we used an optimised liver T2* sequence calibrated against 50 liver biopsy samples on 25 patients with transfusional haemosiderosis using ordinary least squares linear regression, and assessed the method reproducibility in 96 scans over an LIC range up to 42 mg/g dry weight (dw) using Bland-Altman plots. Using mixed model linear regression we compared the new T2*-LIC with R2-LIC (Ferriscan) on 92 scans in 54 patients with transfusional haemosiderosis and examined method agreement using Bland-Altman approach. RESULTS: Strong linear correlation between ln(T2*) and ln(LIC) led to the calibration equation LIC = 31.94(T2*)-1.014. This yielded LIC values approximately 2.2 times higher than the proof-of-concept T2* method. Comparing this new T2*-LIC with the R2-LIC (Ferriscan) technique in 92 scans, we observed a close relationship between the two methods for values up to 10 mg/g dw, however the method agreement was poor. CONCLUSIONS: New calibration of T2* against liver biopsy estimates LIC in a reproducible way, correcting the proof-of-concept calibration by 2.2 times. Due to poor agreement, both methods should be used separately to diagnose or rule out liver iron overload in patients with increased ferritin

    Profiles of physical, emotional and psychosocial wellbeing in the Lothian birth cohort 1936

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Physical, emotional, and psychosocial wellbeing are important domains of function. The aims of this study were to explore the existence of separable groups among 70-year olds with scores representing physical function, perceived quality of life, and emotional wellbeing, and to characterise any resulting groups using demographic, personality, cognition, health and lifestyle variables.</p> <p>Methods</p> <p>We used latent class analysis (LCA) to identify possible groups.</p> <p>Results</p> <p>Results suggested there were 5 groups. These included High (n = 515, 47.2% of the sample), Average (n = 417, 38.3%), and Poor Wellbeing (n = 37, 3.4%) groups. The two other groups had contrasting patterns of wellbeing: one group scored relatively well on physical function, but low on emotional wellbeing (Good Fitness/ Low Spirits,n = 60, 5.5%), whereas the other group showed low physical function but relatively well emotional wellbeing (Low Fitness/Good Spirits, n = 62, 5.7%). Salient characteristics that distinguished all the groups included smoking and drinking behaviours, personality, and illness.</p> <p>Conclusions</p> <p>Despite there being some evidence of these groups, the results also support a largely one-dimensional construct of wellbeing in old age—for the domains assessed here—though with some evidence that some individuals have uneven profiles.</p

    Developmental time course of peripheral cross‐modal sensory interaction of the trigeminal and gustatory systems

    Get PDF
    Few sensory modalities appear to engage in cross‐modal interactions within the peripheral nervous system, making the integrated relationship between the peripheral gustatory and trigeminal systems an ideal model for investigating cross‐sensory support. The present study examined taste system anatomy following unilateral transection of the trigeminal lingual nerve (LX) while leaving the gustatory chorda tympani intact. At 10, 25, or 65 days of age, rats underwent LX with outcomes assessed following various survival times. Fungiform papillae were classified by morphological feature using surface analysis. Taste bud volumes were calculated from histological sections of the anterior tongue. Differences in papillae morphology were evident by 2 days post‐transection of P10 rats and by 8 days post in P25 rats. When transected at P65, animals never exhibited statistically significant morphological changes. After LX at P10, fewer taste buds were present on the transected side following 16 and 24 days survival time and remaining taste buds were smaller than on the intact side. In P25 and P65 animals, taste bud volumes were reduced on the denervated side by 8 and 16 days postsurgery, respectively. By 50 days post‐transection, taste buds of P10 animals had not recovered in size; however, all observed changes in papillae morphology and taste buds subsided in P25 and P65 rats. Results indicate that LX impacts taste receptor cells and alters epithelial morphology of fungiform papillae, particularly during early development. These findings highlight dual roles for the lingual nerve in the maintenance of both gustatory and non‐gustatory tissues on the anterior tongue. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 76: 626–641, 201

    Nature and consequences of interactions between Salmonella enterica serovar Dublin and host cells in cattle

    Get PDF
    International audienceAbstractSalmonella enterica is a veterinary and zoonotic pathogen of global importance. While murine and cell-based models of infection have provided considerable knowledge about the molecular basis of virulence of Salmonella, relatively little is known about salmonellosis in naturally-affected large animal hosts such as cattle, which are a reservoir of human salmonellosis. As in humans, Salmonella causes bovine disease ranging from self-limiting enteritis to systemic typhoid-like disease and exerts significant economic and welfare costs. Understanding the nature and consequences of Salmonella interactions with bovine cells will inform the design of effective vaccines and interventions to control animal and zoonotic infections. In calves challenged orally with S. Dublin expressing green fluorescent protein (GFP) we observed that the bacteria were predominantly extracellular in the distal ileal mucosa and within gut-associated lymph nodes 48 h post-infection. Intracellular bacteria, identified by flow cytometry using the GFP signal, were predominantly within MHCII+ macrophage-like cells. In contrast to observations from murine models, these S. Dublin-infected cells had elevated levels of MHCII and CD40 compared to both uninfected cells from the same tissue and cells from the cognate tissue of uninfected animals. Moreover, no gross changes of the architecture of infected lymph nodes were observed as was described previously in a mouse model. In order to further investigate Salmonella-macrophage interactions, net replication of S. enterica serovars that differ in virulence in cattle was measured in bovine blood-derived macrophages by enumeration of gentamicin-protected bacteria and fluorescence dilution, but did not correlate with host-specificity
    corecore