226 research outputs found

    Physiological correlates of performance in international-standard squash players

    Get PDF
    Tactical, technical and fitness factors are important for success in elite squash. While tactical and endurance fitness aspects have been explored, altered demands that have resulted from rule changes and absence of specific tests of high-intensity exercise capabilities have prevented identification of elements of fitness that correlate with performance in elite-standard players. Accordingly, the purpose of this study was to investigate relationships between test scores and player rank in such players. With institutional ethics approval, 31 players from the England Squash performance programme participated (11 women and 20 men, mean±SD body mass 62.4±5.5 kg and 73.1±7.5 kg respectively). After habituation, participants completed countermovement and drop-jump tests, squash-specific tests of change-of-direction speed and multiple-sprint ability and the multistage fitness test in one test session. Short recoveries were allowed between tests. World rank at the time of testing was obtained from the Professional Squash Association website. In men, change-of-direction speed (??=?0.59, p?=?0.02, n?=?14) multiple-sprint ability (??=?0.78, p<0.01, n?=?13) and fastest sprint from the multiple-sprint test (??=?0.86, p<0.01, n?=?13) correlated with world rank. In women, only fastest repetition from the multiple-sprint test correlated with world rank (??=?0.65, p?=?0.04, n?=?10). Measures of high-intensity exercise capability correlated with world rank in elite-standard men and women players. Endurance capability did not relate to rank in either the men or women. The results suggest that high-intensity, variable-direction exercise capabilities are important for success in elite squash

    Facilitation Differentially Affects Competitive Responses of Aspen and Subalpine Fir Through Stages of Stand Development

    Get PDF
    Spatial interactions between trees influence forest community succession. The objective of this study was to investigate how shifts in forest composition and proximity between tree species affect stand development over time in mixed forest systems. At six locations across the Fishlake National Forest, Utah, USA, in stands where facilitation has been documented previously, tree-ring samples were collected from aspen and subalpine fir trees. Basal area increment was calculated to characterize the effects of the proximity of overstory trees on multidecadal growth responses of aspen and subalpine fir in aspen-dominant and mixed aspen–conifer stands. Subalpine fir seedlings were established next to aspen (within 10 cm) when aspen was between 15 and 120 years old with a mean age of 60 years. Aspen and subalpine fir growth rates were reduced with increasing conifer abundance. Aspen trees growing next to a proximate subalpine fir tree had slower growth rates over time than aspen trees growing independently. Growth rates of subalpine fir in aspen-dominated stands were similar when growing independently or near aspen trees. However, subalpine fir in conifer-dominated stands maintained higher growth rates when growing next to an aspen tree than when growing independently. The data suggest that as stand competition increases with conifer abundance, the proximity of overstory trees increases competitive exclusion of aspen while having a beneficial growth effect on subalpine fir. These results underscore the importance of maintaining natural fire regimes in forest systems that keep competitive interactions in balance

    Formation of Low Volatility Organic Compounds and Secondary Organic Aerosol from Isoprene Hydroxyhydroperoxide Low-NO Oxidation

    Get PDF
    Gas-phase low volatility organic compounds (LVOC), produced from oxidation of isoprene 4-hydroxy-3-hydroperoxide (4,3-ISOPOOH) under low-NO conditions, were observed during the FIXCIT chamber study. Decreases in LVOC directly correspond to appearance and growth in secondary organic aerosol (SOA) of consistent elemental composition, indicating that LVOC condense (at OA below 1 μg m^(–3)). This represents the first simultaneous measurement of condensing low volatility species from isoprene oxidation in both the gas and particle phases. The SOA formation in this study is separate from previously described isoprene epoxydiol (IEPOX) uptake. Assigning all condensing LVOC signals to 4,3-ISOPOOH oxidation in the chamber study implies a wall-loss corrected non-IEPOX SOA mass yield of ∼4%. By contrast to monoterpene oxidation, in which extremely low volatility VOC (ELVOC) constitute the organic aerosol, in the isoprene system LVOC with saturation concentrations from 10^(–2) to 10 μg m^(–3) are the main constituents. These LVOC may be important for the growth of nanoparticles in environments with low OA concentrations. LVOC observed in the chamber were also observed in the atmosphere during SOAS-2013 in the Southeastern United States, with the expected diurnal cycle. This previously uncharacterized aerosol formation pathway could account for ∼5.0 Tg yr^(–1) of SOA production, or 3.3% of global SOA

    DNA barcoding identifies cryptic animal tool materials

    Get PDF
    Funding: Biotechnology and Biological Sciences Research Council (BBSRC) (Grants BB/G023913/1 and BB/G023913/2 to C.R., and studentship to B.C.K.), the School of Biology at the University of St Andrews (studentships to M.P.S. and B.C.K.), and the Leverhulme Trust (Grant RPG-2015-273 to P.M.H.).Some animals fashion tools or constructions out of plant materials to aid foraging, reproduction, self-maintenance, or protection. Their choice of raw materials can affect the structure and properties of the resulting artifacts, with considerable fitness consequences. Documenting animals’ material preferences is challenging, however, as manufacture behavior is often difficult to observe directly, and materials may be processed so heavily that they lack identifying features. Here, we use DNA barcoding to identify, from just a few recovered tool specimens, the plant species New Caledonian crows (Corvus moneduloides) use for crafting elaborate hooked stick tools in one of our long-term study populations. The method succeeded where extensive fieldwork using an array of conventional approaches—including targeted observations, camera traps, radio-tracking, bird-mounted video cameras, and behavioral experiments with wild and temporarily captive subjects—had failed. We believe that DNA barcoding will prove useful for investigating many other tool and construction behaviors, helping to unlock significant research potential across a wide range of study systems.Publisher PDFPeer reviewe

    Isoprene NO_3 Oxidation Products from the RO_2 + HO_2 Pathway

    Get PDF
    We describe the products of the reaction of the hydroperoxy radical (HO_2) with the alkylperoxy radical formed following addition of the nitrate radical (NO_3) and O_2 to isoprene. NO_3 adds preferentially to the C_1 position of isoprene (>6 times more favorably than addition to C_4), followed by the addition of O_2 to produce a suite of nitrooxy alkylperoxy radicals (RO_2). At an RO_2 lifetime of ∼30 s, δ-nitrooxy and β-nitrooxy alkylperoxy radicals are present in similar amounts. Gas-phase product yields from the RO_2 + HO_2 pathway are identified as 0.75–0.78 isoprene nitrooxy hydroperoxide (INP), 0.22 methyl vinyl ketone (MVK) + formaldehyde (CH_2O) + hydroxyl radical (OH) + nitrogen dioxide (NO_2), and 0–0.03 methacrolein (MACR) + CH_2O + OH + NO_2. We further examined the photochemistry of INP and identified propanone nitrate (PROPNN) and isoprene nitrooxy hydroxyepoxide (INHE) as the main products. INHE undergoes similar heterogeneous chemistry as isoprene dihydroxy epoxide (IEPOX), likely contributing to atmospheric secondary organic aerosol formation

    Multiple, distinct intercontinental lineages but isolation of Australian populations in a cosmopolitan lichen-forming Fungal Taxon, Psora decipiens (Psoraceae, Ascomycota)

    Get PDF
    Multiple drivers shape the spatial distribution of species, including dispersal capacity, niche incumbency, climate variability, orographic barriers, and plate tectonics. However, biogeographic patterns of fungi commonly do not fit conventional expectations based on studies of animals and plants. Fungi, in general, are known to occur across exceedingly broad, intercontinental distributions, including some important components of biological soil crust communities (BSCs). However, molecular data often reveal unexpected biogeographic patterns in lichenized fungal species that are assumed to have cosmopolitan distributions. The lichen-forming fungal species Psora decipiens is found on all continents, except Antarctica and occurs in BSCs across diverse habitats, ranging from hot, arid deserts to alpine habitats. In order to better understand factors that shape population structure in cosmopolitan lichen-forming fungal species, we investigated biogeographic patterns in the cosmopolitan taxon P. decipiens, along with the closely related taxa P. crenata and P. saviczii. We generated a multi-locus sequence dataset based on a worldwide sampling of these taxa in order to reconstruct evolutionary relationships and explore phylogeographic patterns. Both P. crenata and P. decipiens were not recovered as monophyletic; and P. saviczii specimens were recovered as a monophyletic clade closely related to a number of lineages comprised of specimens representing P. decipiens. Striking phylogeographic patterns were observed for P. crenata, with populations from distinct geographic regions belonging to well-separated, monophyletic lineages. South African populations of P. crenata were further divided into well-supported sub-clades. While well-supported phylogenetic substructure was also observed for the nominal taxon P. decipiens, nearly all lineages were comprised of specimens collected from intercontinental populations. However, all Australian specimens representing P. decipiens were recovered within a single well-supported monophyletic clade consisting solely of Australian samples. Our study supports up to 10 candidate species-level lineages in P. decipiens, based on genealogical concordance and coalescent-based species delimitation analyses. Our results support the general pattern of the biogeographic isolation of lichen-forming fungal populations in Australia, even in cases where closely related congeners have documented intercontinental distributions. Our study has important implications for understanding factors influencing diversification and distributions of lichens associated with BSC.This research was funded, in part, by a start-up grant from BYU College of Life Sciences to SL; MarW’s and MatW’s work was done within the European Soil Crust Project SCIN (Büdel et al., 2014) funded by the ERA-Net BiodivERsA program, with the national funder The Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning (FORMAS)

    Fc receptor-like 5 and anti-CD20 treatment response in granulomatosis with polyangiitis and microscopic polyangiitis

    Get PDF
    BACKGROUND. Baseline expression of FCRL5, a marker of naive and memory B cells, was shown to predict response to rituximab (RTX) in rheumatoid arthritis. This study investigated baseline expression of FCRL5 as a potential biomarker of clinical response to RTX in granulomatosis with polyangiitis (CPA) and microscopic polyangiitis (MPA). METHODS. A previously validated quantitative PCR-based (qPCR-based) platform was used to assess FCRL5 expression in patients with GPA/MPA (RAVE trial, NCT00104299). RESULTS. Baseline FCRL5 expression was significantly higher in patients achieving complete remission (CR) at 6,12, and 18 months, independent of other clinical and serological variables, among those randomized to RTX but not cyclophosphamide-azathioprine (CYC/AZA). Patients with baseline FCRL5 expression >= 0.01 expression units (termed FCRL5(hi)) exhibited significantly higher CR rates at 6,12, and 18 months as compared with FCRL5(lo) subjects (84% versus 57% [P = 0.016], 68% versus 40% [P = 0.02], and 68% versus 29% [P = 0.0009], respectively). CONCLUSION. Our data taken together suggest that FCRL5 is a biomarker of B cell lineage associated with increased achievement and maintenance of complete remission among patients treated with RTX and warrant further investigation in a prospective manner

    Rare copy number variants: a point of rarity in genetic risk for bipolar disorder and schizophrenia

    Get PDF
    Context: Recent studies suggest that copy number variation in the human genome is extensive and may play an important role in susceptibility to disease, including neuropsychiatric disorders such as schizophrenia and autism. The possible involvement of copy number variants (CNVs) in bipolar disorder has received little attention to date. Objectives: To determine whether large (>100 000 base pairs) and rare (found in <1% of the population) CNVs are associated with susceptibility to bipolar disorder and to compare with findings in schizophrenia. Design: A genome-wide survey of large, rare CNVs in a case-control sample using a high-density microarray. Setting: The Wellcome Trust Case Control Consortium. Participants: There were 1697 cases of bipolar disorder and 2806 nonpsychiatric controls. All participants were white UK residents. Main Outcome Measures: Overall load of CNVs and presence of rare CNVs. Results: The burden of CNVs in bipolar disorder was not increased compared with controls and was significantly less than in schizophrenia cases. The CNVs previously implicated in the etiology of schizophrenia were not more common in cases with bipolar disorder. Conclusions: Schizophrenia and bipolar disorder differ with respect to CNV burden in general and association with specific CNVs in particular. Our data are consistent with the possibility that possession of large, rare deletions may modify the phenotype in those at risk of psychosis: those possessing such events are more likely to be diagnosed as having schizophrenia, and those without them are more likely to be diagnosed as having bipolar disorder

    5-HTTLPR-environment interplay and its effects on neural reactivity in adolescents

    Get PDF
    It is not known how 5-HTTLPR genotype x childhood adversity (CA) interactions that are associated with an increased risk for affective disorders in population studies operate at the neural systems level. We hypothesized that healthy adolescents at increased genetic and environmental risk for developing mood disorders (depression and anxiety) would demonstrate increased amygdala reactivity to emotional stimuli compared to those with only one such risk factor or those with none. Participants (n=67) were classified into one of 4 groups dependent on being homozygous for the long or short alleles within the serotonin-transporter-linked polymorphic region (5-HTTLPR) of the SLC6A4 gene and exposure to CA in the first 11 years of life (present or absent). A functional magnetic resonance imaging investigation was undertaken which involved viewing emotionally-salient face stimuli. In addition, we assessed the role of other variables hypothesized to influence amygdala reactivity, namely recent negative life-events (RNLE) assessed at ages 14 and 17, current anxiety symptoms and psychiatric history. We replicated prior findings demonstrating moderation by gene variants in 5-HTTLPR, but found no support for an effect of CA on amygdala reactivity. We also found a significant effect of RNLE aged 17 with amygdala reactivity demonstrating additive, but not interactive effects with 5-HTTLPR. A whole-brain analysis found a 5-HTTLPR×CA interaction in the lingual gyrus whereby CA appears to differentially modify neural reactivity depending on genotype. These results demonstrate that two different forms of environmental adversities interplay with 5-HTTLPR and thereby differentially impact amygdala and cortical reactivity
    • …
    corecore