1,589 research outputs found

    π\pi-Electron Ferromagnetism in Metal Free Carbon Probed by Soft X-Ray Dichroism

    Full text link
    Elemental carbon represents a fundamental building block of matter and the possibility of ferromagnetic order in carbon attracted widespread attention. However, the origin of magnetic order in such a light element is only poorly understood and has puzzled researchers. We present a spectromicroscopy study at room temperature of proton irradiated metal free carbon using the elemental and chemical specificity of x-ray magnetic circular dichroism (XMCD). We demonstrate that the magnetic order in the investigated system originates only from the carbon π\pi-electron system.Comment: 10 pages 3 color figure

    Magnetic phase diagram of the Hubbard model with next-nearest-neighbour hopping

    Full text link
    We calculate the magnetic phase diagram of the Hubbard model for a Bethe lattice with nearest neighbour (NN) hopping t1t_1 and next nearest neighbour (NNN) hopping t2t_2 in the limit of infinite coordination. We use the amplitude t2/t1t_2/t_1 of the NNN hopping to tune the density of states (DOS) of the non-interacting system from a situation with particle-hole symmetry to an asymmetric one with van-Hove singularities at the lower (t2/t1>0t_2/t_1>0) respectively upper (t2/t1<0t_2/t_1<0) band edge for large enough ∣t2/t1∣|t_2/t_1|. For this strongly asymmetric situation we find rather extended parameter regions with ferromagnetic states and regions with antiferromagnetic states.Comment: 13 pages, 7 figure

    Band selection and disentanglement using maximally-localized Wannier functions: the cases of Co impurities in bulk copper and the Cu (111) surface

    Get PDF
    We have adapted the maximally-localized Wannier function approach of [I. Souza, N. Marzari and D. Vanderbilt, Phys. Rev. B 65, 035109 (2002)] to the density functional theory based Siesta method [J. M. Soler et al., J. Phys.: Cond. Mat. 14, 2745 (2002)] and applied it to the study of Co substitutional impurities in bulk copper as well as to the Cu (111) surface. In the Co impurity case, we have reduced the problem to the Co d-electrons and the Cu sp-band, permitting us to obtain an Anderson-like Hamiltonian from well defined density functional parameters in a fully orthonormal basis set. In order to test the quality of the Wannier approach to surfaces, we have studied the electronic structure of the Cu (111) surface by again transforming the density functional problem into the Wannier representation. An excellent description of the Shockley surface state is attained, permitting us to be confident in the application of this method to future studies of magnetic adsorbates in the presence of an extended surface state

    Young athletes under pressure?

    Get PDF
    Regular participation in exercise has long been known to result in cardiovascular adaptation. Historically, the ‘athlete’s heart’ hypothesis has encouraged a dichotomised view of the heart’s adaptation to sport, depending on whether the physical activity was either of isotonic activity (runners and swimmers) resulting in ‘cardiomegaly’ or of isometric effort (wrestlers and shot putters, ie, ‘strength’ athletes) with clear peripheral adaptations and an ‘obvious increase in cardiac size’. Today, the classification of sports according to their physiological demands acknowledges a greater diversity of exposure, depending on the physical activity, with an emphasis on a ‘graded transition’ between the main categories: dynamic, static and impact. Still, our understanding of the determinants of structural and functional cardiovascular adaptation to exercise are limited, and the consequences for health remain a matter of debate
    • …
    corecore