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Abstract. We have adapted the maximally-localized Wannier function approach of

[Souza I, Marzari N and Vanderbilt D 2002 Phys. Rev. B 65 035109] to the density

functional theory based Siesta code [Soler J M et al. 2002 J. Phys.: Cond. Mat. 14

2745] and applied it to the study of Co substitutional impurities in bulk copper as well

as to the Cu (111) surface. In the Co impurity case, we have reduced the problem

to the Co d-electrons and the Cu sp-band, permitting us to obtain an Anderson-like

Hamiltonian from well defined density functional parameters in a fully orthonormal

basis set. In order to test the quality of the Wannier approach to surfaces, we have

studied the electronic structure of the Cu (111) surface by again transforming the

density functional problem into the Wannier representation. An excellent description

of the Shockley surface state is attained, permitting us to be confident in the application

of this method to future studies of magnetic adsorbates in the presence of an extended

surface state.
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1. Introduction

The advent of density functional theory (DFT) in electronic structure calculations has

revolutionized the fields of quantum chemistry and, more generally, of condensed matter

physics [1]. However, due to necessary approximations of the unknown functionals

(typically, the local density approximation or LDA, and semilocal approximations as

the generalized gradient approximation or GGA), important limitations prevail in the

description of many systems ranging from insulating materials to impurities in a metal

host. The general approach to these problems is to go beyond DFT by proposing a

simplified Hamiltonian that can be solved, at the expense of losing the parameter-free

advantage of DFT. Recently, the situation is changing and new methods either stemming

from DFT or making use of DFT for initial input are emerging [2, 3]. One such example

is the LDA+U approach [4, 5] where the exchange-correlation potential for the local

electron gas is complemented by missing strong localized correlations. The success of

this approach has been considerable in explaining the opening of a band gap in systems

with localized electronic states. Yet, the choice of the Coulomb intra-atomic energy U

is somewhat arbitrary, depending on the choice of basis sets or other descriptors of the

treated system [6].

Nakamura and co-workers [7] have developed a constrained LDA approach based

on maximally localized Wannier functions (MLWF) [8]. The MLWF replace the linear

muffin-tin orbitals (LMTO) that were initially used as a natural basis set to define

U [4, 9, 10]. As Nakamura et al. emphasize [7], the properties of MLWF are particularly

appealing for reducing the complicated DFT problem to a simplified Hamiltonian, where

especial physics can be explored such as the localized electron correlations mentioned

above. Wannier functions have been thoroughly explored in the work by Marzari

and Vanderbilt [11], and an algorithmic approach to obtaining them from a DFT

calculation is available. More recently, Souza, Marzari and Vanderbilt [8] have extended

the approach to disentangle electronic bands, creating a compact local basis set that

accurately reproduces the DFT electronic structure in a given energy window. This

approach is independent of the actual implementation of the DFT calculation, yielding

a natural way of describing an extended basis set calculation in terms of localized

functions.

In the present work, we have interfaced the approach by Souza et al. [8] as

implemented in Wannier90 [12] to the Siesta code [13]. Contrary to the case of

Nakamura et al. [7], Siesta is an atomic basis set code, and it would seem natural

to use the atomic orbitals to define U and associated model Hamiltonians. However,

besides their optimized spread, MLWF have two important features: (i) they are a

naturally orthogonal basis set, rendering tight-binding like approaches easy to use (ii)

the extraordinary accuracy of MLWF in a defined energy window permits to disentangle

electronic bands [8] and to have a simple tight-binding approach with DFT accuracy

within the chosen energy window. Hence, our present implementation of MLWF permits

us to translate the complex atomic orbital method into a simple orthogonal tight-binding
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approach that can be easily cast into an Anderson-Hamiltonian model [14] or a Hubbard

one [15].

The manuscript is organized in four sections. The methods section deals with

a small overview of the work of reference [8], and the technical details of the actual

numerical implementation. The approach is then applied to two different systems: (i)

a substitutional Co impurity in bulk Cu and (ii) the Cu (111) surface. Both systems

are of uttermost interest. The case of Co in Cu is a classical example where strong

correlations are in play leading to very large Kondo temperatures [16, 17], hence it is

interesting to understand the magnetic properties leading to the Kondo correlations in

this system [18]. Besides, Co in Cu is one of the model giant magnetoresistance (GMR)

systems [19, 20, 21]. The concentration of Co in Cu is an important parameter in its

magnetic properties [21]. Indeed, when the Co to Cu atomic ratio is above 1 to 4, the

system becomes a ferromagnet. Below this density, Fan et al. [21] experimentally find

that the Co atoms are distant enough to show paramagnetism in agreement with the

paradigmatic analysis by Goodenough [22]. We will concentrate in this paramagnetic

phase, with two different densities, for 2× 2× 2 and 4× 4× 4 cubic supercells.

Our calculations are a first step in the study of the complex electronic structure

of the Co-impurity problem that presents a high (∼ 500 K) Kondo temperature [17].

Hence, the evolution of the electronic structure as the Co concentration is reduced,

permits us to study the effect of Co concentration and the use of MWLF gives us access

to an Anderson-like Hamiltonian.

The study of the Cu(111) surface is also very interesting given the existence of the

LL′ gap (Γ̄ in the surface Brillouin zone) and the associated Shockley state. Despite the

locality of the MLWF, the calculations succeed in accounting for the surface Shockley

state and in yielding the correct electronic structure about the Fermi energy.

This work shows that MLWF are accurate enough to study the magnetic properties

of Co on Cu(111) and are a first step towards the study of the electronic structure [23]

on surface systems as well as the Kondo effect of magnetic adsorbates that has recently

received much experimental [24, 25] and theoretical [26] attention.

2. Method

2.1. Wannier functions and Wannier90

Wannier functions, w(r−R), are formally identical to Fourier coefficients of Bloch

waves, ψk(r), given by

w(r−R) =
1

Ω⋆

∫

BZ

ψk(r)e
−ik·R d3k. (1)

Here R denote Bravais vectors and Ω⋆ is the volume of the Brillouine zone (BZ).

This definition suffers from the indeterminacy of the phases of Bloch functions, ψk(r).

Furthermore, if a group of bands, {n} is considered, with corresponding Bloch functions,
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ψkn(r), it is ambiguous to talk about an individual band and the above definition can

be generalized to

wm(r−R) =
1

Ω⋆

∫ ∑

n

Umn(k)ψkn(r)e
−ik·R d3k, (2)

where Umn(k) is an arbitrary unitary matrix. The unitarity guarantees that the Wannier

functions will be orthogonal. The arbitrariness of Umn(k) allows for tuning the phases

of Bloch functions in the integral as well as the admixture of functions pertaining to

different bands. Thus, there is a whole class of Wannier functions for the given band

structure. Marzari and Vanderbilt devised a variational scheme that determines the

Wannier functions with minimum total spread, Ω defined as

Ω =
∑

m

[
〈r2〉m − 〈r〉2m

]
, (3)

where we have used the notation 〈 · 〉m = 〈wm| · |wm〉. For a given set of Bloch functions,

the total spread, Ω, is a functional of the unitary matrices Umn(k). The Wannier

functions so obtained are called maximally-localized Wannier functions (MLWF).

The locality and the orthogonality of Wannier functions permit us to have a

straightforward compact tight-binding representation of the Hamiltonian in systems

where the group of bands of interest is separated from the rest of the electronic structure

by a band gap. In metals, the absence of band gaps renders the separation of states more

complicated. Souza et al. have devised a disentanglement procedure [8] by focusing on a

certain energy window, hereinafter called outer energy window, and by selecting certain

bands in it. Hence, the disentanglement procedure necessarily reduces the number of

states inside the outer energy window, while exactly reproducing the electronic bands in

a certain energy interval called inner energy window. The selection of bands proceeds

via trial orbitals gn(r) that allow to define the character of the Wannier subspace of

interest.

The numerical calculations of MLWF have been done with the Wannier90 [12]

code. This package can be used as a post-processing tool with most first-principles codes.

In practical simulations, the Bloch states, |ψkn〉, are computed in a mesh of uniformly

spaced k-points within the first-Brillouin zone. The basis set used to represent the

wave functions changes from one electronic structure code to another one; however, the

MLWF algorithm requires an input that is essentially basis-independent. In particular,

the main ingredients are (i) the overlap matrix between the cell-periodic parts of the

wavefunctions at neighboring k-points

Mmn(k,b) = 〈ukm|uk+bn〉 = 〈ψkm|e
−ib·r|ψk+bn〉, (4)

(ii) the Bloch energies εkn on the regular grid of k-points and (iii) the coefficients of the

above trial orbitals, gn(r), in the Bloch basis

Amn(k) = 〈ψkm|gn〉. (5)
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The trial functions we employ are of the form gn(r) = Rn(r)Θlmr
(φ, θ), r = r, φ, θ,

a product of nodeless hydrogenic-like radial part Rn(r) and a real spherical harmonic

Θlmr
(φ, θ) with angular momentum l and projection mr.

From this, the Wannier90 code computes the final unitary transformation

matrices Umn(k). With the aid of the matrices Umn(k) the Hamiltonian can be expressed

in the Wannier basis and diagonalized at any k-point. These Wannier-based energy

bands are further compared to the initial ab-initio bands in order to test the quality of

the newly obtained Wannier basis set.

It is very useful to work with density of states projected onto a certain Wannier

function of spin σ, wmσ. This projected density of states (PDOS)[27] is the spectral

function, ρmσ(ω), given by

ρmσ(ω) =
∑

nk

|〈wmσ|ψknσ〉|
2 δ(ω − ǫknσ)

=
∑

nk

|Umn(kσ)|
2 δ(ω − ǫknσ). (6)

This Wannier PDOS or spectral function shows how the Wannier character is distributed

in energy over the electronic band structure ‡.

From (6) it is straightforward to define the Wannier function occupation at zero

temperature as

nmσ =

∫ µ

−∞

ρmσ(ω)dω, (7)

where µ is the Fermi level.

2.2. Pseudo-atomic orbital DFT calculations

Ab-initio DFT calculation presented in this work are based on strictly localized [28]

numerical pseudo-atomic orbitals (PAO) [29] that are solutions to the atomic Kohn and

Sham equation with norm-conserving pseudopotentials. In particular, the calculations

are done using the Siesta [13] package.

The matrix elements between basis functions are calculated by real-space

integration, and the Hamiltonian eigenstates are labeled using the Bloch theorem,

because periodic boundary conditions are imposed. The Bloch functions can be

expanded into the PAO basis as follows

ψnk(r) =
∑

Rµ

cµn(k)e
ik·(rµ+R)ϕµ(r− rµ −R) (8)

where we assume that the unit cell contains the centers rµ of basis functions ϕµ(r− rµ)

which are then repeated periodically to every other cell by the Bravais lattice vector R.

‡ The PDOS can be used to analyze any electronic structure by choosing the analyzing functions, for

example, molecular orbitals were used to describe the electronic structure of benzene on Cu(100) in

[27].
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Finally, the complex numbers cµn(k) are expansion coefficients. The Brillouin zone is

sampled uniformly. For the exchange and correlation potential entering the Kohn and

Sham equation, we use the PBE generalized gradient approximation [30]. The chosen

atomic basis set is an optimized double-ζ plus polarization for the valence states of Co

and Cu, amounting to 15 basis functions per atom. All the parameters that define the

shape and the range of the basis functions were obtained by a variational optimization

of the enthalpy (energy plus a penalty for orbital volume increase) with a pressure

of P = 0.1 GPa, following the recipe given in reference [31]. The substitutional Co

impurity basis set was optimized in the Cu host, and the Cu basis set corresponds to

the optimal one for bulk Cu. The question of optimal basis sets for surfaces is more

intricate and has been discussed in [32]. We use the basis set obtained in reference [32],

which is based on the same enthalpy minimization with an especial focus on the vacuum

extension of the surface state density.

2.3. Implementation of Wannier functions

The implementation of maximally localized Wannier functions in Siesta consists in

evaluation of (4) and (5). Expanding the Bloch functions according to (8), we obtain

Mmn(k,b) =
∑

µν

∑

R

c∗µm(k)cνn(k+ b)eik·(R−rµ+rν)Mµν(R,b) (9)

along with

Amn(k) =
∑

µ

c∗µm(k)
∑

R

e−ik·(R+rµ)Aµn(R), (10)

where

Mµν(R,b) =

∫
ϕ∗
µ(r+R− rµ + rν)e

−ib·rϕν(r)d
3r (11)

and

Aµn(R) =

∫
ϕ∗
µ(r− rµ −R)gn(r)d

3r. (12)

This reduces the computation of (4) and (5) to the calculation of a few matrix

elements of localized functions, equations (11) and (12). The first integral is computed

on the real space grid while the second integral makes use of the analytic angular

dependence of the integrand in the same way as is done for the calculation of overlap

matrices in reference[13]. This is an important difference with the implementation of

[33] where an expansion on powers of the integrand is performed. Another difference of

our implementation is that we write an interface for Wannier90, and hence the trial

functions are the ones for Wannier90, while in reference [33] the original basis set is

used.

Finally, we note that Brillouin zone sampling used to obtain the self-consistent

electronic density in Siesta is essentially independent from the sampling used for the

input data of Wannier90, i.e. Equations (4,5) and ǫnk.
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2.4. Ab-initio calculation of a cobalt impurity in bulk copper

The first system, the cobalt impurity in a bulk FCC copper host matrix, was simulated

by a supercell where one host atom was replaced by a cobalt one. The lattice parameter

was fixed to the theoretical value we found for pure copper (alat = 3.690Å). We use two

different unit cells to represent the system: (i) an eight-atom (2× 2 × 2) cell § , where

there is a 1/7 ratio of Co impurities, and (ii) a 64-atom one (4×4×4) ‖ where the cobalt

concentration drops to 1/63. Besides its lower computational demand, the small cell

permits us to represent the calculated bands and follow the Wannier disentanglement

in a simpler way avoiding the larger band folding of the (4×4×4) supercell. According

to the experimental data by Fan et al. [21] only above a concentration ratio of 1/4 does

Co in Cu show ferromagnetic ordering; below this concentration, the system becomes

paramagnetic. Our calculations correspond to impurity densities of the paramagnetic

phase.

Interestingly, the measured saturation magnetic moment per atom is 1.5 µB for

pure Co and it drops to 0.4µB/atom for a 1/9 concentration [21]. Our calculations

yield 0.15µB/atom for the 1/7 concentration, indicating a smaller spin-polarization of

our DFT calculations. It is difficult to know the actual experimental error bar, but

our calculations yield the right order of magnitude as well as the trend with decreasing

Co concentration. Indeed, the supercell magnetization for the 2 × 2 × 2-case (1/7

concentration) is 1.03 µB (0.15µB/atom) while the supercell magnetization for the

4×4×4 is 1.57 µB (0.025µB/atom), indicating a saturation of the cell magnetization and

thus a decrease of magnetization per atom, roughly linear with the number of electrons

following the Slater-Pauling curve [21].

For the obtention of the MLWF, 55 bands in the 2× 2× 2 supercell and 460 in the

case of a 4×4×4 supercell, were extracted for both spins, spanning the energy interval of

(-14.0,9.1) eV with respect to the Fermi level (fully including the lowest valence bands).

This energy interval is the outer window of Wannier90.

At the Fermi surface, the relevant states are both dispersive conduction bands and

hybridized cobalt states originating from the Co incomplete d-shell. On the other hand,

the closed copper d-shell gives rise to narrow bands, lying deeper below the Fermi energy

(µ). In order to simplify the host electronic structure, we want these Cu d-bands to

be projected out during the disentanglement process and keep a simpler sp-like band.

This can be achieved by both (1) the choice of the inner window position that freezes

the bands with dispersive character around µ and (2) the choice of trial orbitals. As for

the latter, we used one spherically symmetric function per atom, located in one of the

two interstitials of the fcc primitive cell. In addition, five cobalt centered orbitals with

angular momentum l = 2 were used. The inner window choice is discussed in Section 3.

§ For the supercell of 8 atoms (2 × 2 × 2), the Siesta calculation parameters are the following: the

Brillouin zone sampling was 5 × 5 × 5, the discretization of the real-space mesh was taken from the

mesh cutoff value 500 Ry and the self-consistency tolerance of the density matrix was 10−4.
‖ For the supercell of 64 atoms (4 × 4 × 4), the Brillouin zone sampling was 3 × 3 × 3, keeping the

same convergence criteria as for the 2× 2× 2-cell.
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x

y

z

Figure 1. Scheme of the unit cell of the slab. Atomic basis functions are centered on

Cu atoms (dots). Hence, the dots reproduce the slab geometry, where the size of the

dots conveys information on the different x-coordinate. Crosses indicate the center for

further Wannier90 orbitals, the Wannier90 spherical interstitial trial orbitals, each

located in the 1

4
and 3

4
of the bulk (111) translation vector, which points along the

z-axis of the scheme.

Finally, for the spread, Ω, minimization a tolerance of 10−10 Å2 has been used.

2.5. Simulations of Cu (111)

The second system we studied is the Cu (111) surface. We used a 12-atom slab with

a 1 × 1 surface unit cell. The k-point sampling was 14 × 14 × 1 and real space mesh

cutoff of 800 Ry was used. Please, refer to [32] for more details. The Bloch functions

corresponding to the lowest 120 bands were used to calculate the matrix Mmn(k,b)

using a k-point sampling 10× 10× 1 that largely suffices for convergence obtaining the

MLWF. As in the previous case, we are interested in reproducing with the simplified

scheme of MLWF the electronic structure about the Fermi energy, µ, hence we limit the

inner energy window to the energy interval 〈−1.0, 2.0〉 eV. The inner energy window

must not contain more bands than the required number of Wannier functions, so the

lower limit of the inner energy window is chosen somewhat above the narrow d-like

bands and its upper edge of the inner window is limited by the higher-energy dispersive

bands.

Among various configurations of trial orbitals, we found that the one described in

figure 1 converges to good-quality MLWF. The figure shows the centers of the Wannier

functions that are located both at the atomic positions of the slab (dots) and in between

(crosses) to enhance the electronic structure description. Inside the slab, one spherical

interstitial is sufficient to give a good description of the electronic structure close to

the Fermi energy, µ. On the surface, two functions are necessary; we put them at the

positions corresponding to the interstitials of the bulk geometry. The trial orbital set has

been found stable: only the outermost Wannier functions move some 0.21 Å outwards

during the spread minimization.
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Table 1. Spread (Ω), on-site energies (ǫ̃) and occupation (n) for the cobalt Wannier

functions of a substitutional Co atom in the 2 × 2 × 2-Cu cell. These split into two-

and three-fold degenerate states m = {eg, t2g}. Majority (σ =↑) and minority (σ =↓)

spins are given.

e↑
g

t
↑
2g

e↓
g

t
↓
2g

Ωmσ [Å2] 1.22 3.60 1.66 2.95

ǫ̃mσ − µ [eV] -1.80 -0.74 0.24 -0.01

nmσ [e] 0.94 0.82 0.36 0.74

Table 2. Spread (Ω), on-site energies (ǫ̃) and occupation (n) for the cobalt Wannier

functions of a substitutional Co atom in a 4×4×4-Cu cell. As in the previous case, the

symmetry partially removes the degeneracy and now, two types of states are found,

doubly and threefold degenerate: m = {eg, t2g} for the majority (σ =↑) and minority

(σ =↓) spins.

e↑
g

t
↑
2g

e↓
g

t
↓
2g

Ωmσ [Å2] 0.82 1.28 1.80 3.11

ǫ̃mσ − µ [eV] -2.16 -1.45 0.23 -0.02

nmσ [e] 0.96 0.89 0.33 0.67

3. Results and discussion

3.1. Cobalt impurity embedded in bulk copper

In this section, we present and discuss MLWF for the impurity system. The essence of

what we are doing is a tight-binding representation of a conduction band (supported

by one interstitial Wannier function per atom) hybridizing with impurity Wannier

functions. This picture will be extended in the next section, where we attempt to

separate the Coulomb interaction in the impurity in the spirit of Anderson Hamiltonian.

Figure 2 shows the ab-initio band structure and the disentangled one for the 2×2×2-

cell. The color code denotes 100% overlap with a Co MLWF for red, and 0% for blue.

The chosen inner energy window starts at −1.05 eV and extends up to +3.6 eV. This,

in combination with trial orbital choice, efficiently disentangles the Cu sp-bands from

the Cu d-bands, removes these last ones, and keeps the rest together with the full d-

electron structure of the Co impurity. As we described above, the spin polarization of

the system is sizable due to the presence of Co atoms. This is clearly seen in the present

graph, where the bands split according to their spin, in figure 2 (a), the majority spin is

represented, and correspond to Co d-bands that coexist in the region of the Cu d-bands.

The quality of these bands stemming from the MLWF calculation is considerably worse

than the minority spin ones, figure 2 (b), because they lie outside the inner energy

window. Nevertheless, the calculation contains information on the effect of the Cu d-

bands on the majority spin Co bands as we will discuss in the analysis of the PDOS.

Moreover, the calculations dealing with the magnetic structure and other information



Band selection and disentanglement 10

close to the Fermi energy will be very accurate as can be seen in the excellent matching of

the ab-initio bands and the MLWF ones near the Fermi level, figure 2. The calculation

retains the Cu sp-bands that correspond to the colder-colored bands of figure 2 that

strongly disperse. However, the hot-colored bands present flat features, revealing a

small Co-Co intercell interaction, revealing that the dispersion largely comes from near-

neighbor interactions, Co-Cu. For the 4× 4× 4 cell this interaction is even smaller, but

the bands are not much flatter, what implies that for many Co-based properties our

2× 2× 2 calculations will suffice.

It can be seen that the MLWF disentanglement projects out the Cu d-bands

but retains a realistic description of Co d-bands, as revealed by looking into the spin

polarization of the system. Indeed, by evaluating (7), we can compute the electronic

population of the different MLWF. For the 4×4×4 cell, the majority spin MLWF yields

4.59 electrons, while the minority spin gives a population of 2.65r;, if we add the spin

polarization of the remaining Cu bands, we obtain 1.72 electrons, in good agreement

with the 1.57 electrons of the full ab-initio calculation, discussed in section 2.4.

Valuable information is obtained by analyzing the PDOS in figures 3 and 4 and the

MLWF occupancies, on-site energies and real-space spreads as shown in tables 1 and 2.

Due to the symmetry of the crystal field [22, 34], we find two types of MLWF,

the e↑g one at lower energy, which is twice degenerate according to the on-site energies

(diagonal element of the MLWF Hamiltonian), and the one of t↑2g symmetry, three-fold

degenerate. We find that the minority spin MLWF’s, e↓g, t
↓
2g are actually different in

spread from the majority spin ones, e↑g, t
↑
2g. This is typical of unrestricted Hartree-Fock

schemes, and it reflects the fact that both spins correspond to very different energy

regions. The difference among MLWF’s can be seen in the spread, Ω in tables 1 and

2 and in (3), that measures the extension of the MLWF. We see that eg MLWF’s are

more compact than the t2g ones, and that the majority spin are more compact than the

minority ones. It is interesting to note that the MLWF’s are indeed very confined, in

the present case, the more extended MLWF is basically zero beyond 2 Å from its center.

The on-site energy is exactly the first moment of the spectral function (6), and

hence can be directly correlated to figures 3 and 4. The occupancy is the integration of

the spectral function, over occupied states, from −∞ to the Fermi energy, (7). Hence,

these two quantities help us characterizing the spectral functions. As shown in figures 3

and 4, there are four sharp peaks that correspond to the above four types of MLWF. The

presence of tails further from peak centers indicates that the MLWF’s have an important

hybridization with mainly the Cu host. These tails shift the on-site energy away from

the peak energies. Most of the weight of the MLWF is, however, concentrated in a small

energy window spanned by the peaks. Only in the case of the e↑g MLWF does the peak

slightly lie outside the inner energy window used for the band disentanglement, and

develops a tail in the Cu d-band region.

Small differences show up when going from the 2× 2× 2 cell to the 4× 4× 4 one.

The main peaks lie at the same energy, and only the first momenta or on-site energies

are slightly different (table 2) because the spectral function distribution is somewhat
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Figure 2. (Color online) Interpolated band structure for bulk copper with a

substitutional cobalt impurity in an eight-atom cell (2 × 2 × 2), (a) majority spin,

(b) minority spin. Color denotes overlap of the eigenstate with cobalt states. For

comparison, the ab-initio structure is plotted in grey. The zero of energy is the Fermi

level. The inner energy window is the upper part of each diagram starting at the

dashed line at −1 eV.

narrower for the smaller cell. This is due to the smaller content of Co atoms in the large

cell, that leads to smaller Co-Co hoppings. These comparison permits us to conclude

that the 2 × 2 × 2 cell is indeed a good approximation to the dilute (paramagnetic)

regime, in agreement with the experimental findings by Fan et al. [21].

The fact that the spectral functions are rather localized in energies permit us to

conclude that they are very good descriptors of the actual Co electronic structure. This

is further seen in figure 5, where the MLWF spectral function is compared with the

atomic basis one (3d Cobalt PAOs). Indeed, the PAO spectral function is more spread

in energies, and reveal more mixing with the Cu-band structure, and, consequently, less

Co character. It is also interesting to notice that the main peaks coincide, showing that

the MLWF contain a lot of physics of the actual electronic structure.

From the spectral functions we see that the different electronic contributions of

Co will have different physical properties. The t2g electronic structure is basically fully

occupied and slightly contributes to magnetism. However the eg states have a large spin

polarization, carrying the leading rhôle in the magnetic properties of the Co impurities.

3.2. Model Hamiltonian

The results of the previous section show that the cobalt impurity physics can be

qualitatively understood as an atomic d-orbital weakly hybridized with the Cu substrate.

The hybridization determines the positions and widths of atomic levels, which in turn
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Figure 3. Cobalt Wannier-function projected density of states in the 4 × 4 × 4 cell

for both spins. Zero energy coincides with Fermi level.
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Figure 4. Cobalt Wannier-function projected density of states in the 4 × 4 × 4 cell

for both spins. Zero energy coincides with Fermi level.

fix the impurity occupancy.

There is significant energy splitting regarding spin, which results in sizeable

majority and minority spin populations. It is well understood that the origin of spin

polarization lies in the intra-atomic Coulomb interaction [14]. However, the energy

splitting for the eg levels is larger than for the t2g ones, indicating that different t2g and

eg Coulomb matrix elements must be taken into account.

The aforementioned physics can be captured by the multi-orbital Anderson

Hamiltonian[14]

H = Hat +
∑

nk

∑

mσ

Vnk,mc
†
nkσdmσ +H.C.+

∑

nkσ

ǫnkc
†
nkσcnkσ (13)
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The cell 4× 4× 4 is considered. Zero energy coincides with Fermi level.

where the atomic part reads

Hat =
∑

mσ

ǫmnmσ +
1

2

∑

m,m′ σ

Umm′nmσnm′σ̄, (14)

m,m′ = 1, . . . 5, σ̄ = −σ.

The substrate electrons (operators c†nkσ, cnkσ) with Bloch energies ǫnk hybridize with

impurity given by Hat with on-site energies ǫm. Electrons on the impurity site are

subject to Coulomb repulsion with matrix elements Umm′ coupled to orbital occupancies

nmσ = d†mσdmσ. Interaction of equal spins is neglected by assuming the same value of

direct and exchange integrals. The impurity and conduction band are connected by the

hybridization term with matrix elements Vnk,m.

Construction of the Hamiltonian (13) from first principles using MLWF for a cobalt

impurity in copper substrate is now discussed. Orthogonality of Wannier functions

allows us to divide the Kohn-Sham Hamiltonian into the blocks(
Hsubs V

V† Himp

)
(15)

where Hsubs is the Hamiltonian in the subspace of substrate Wannier functions, Himp

acts on the impurity Wannier functions (i. e. the cobalt eg and t2g functions) while the

remaining terms V,V† are off-diagonal. In order to be consistent with the mean-field

character of the Kohn-Sham DFT we identify (15) with the mean-field solution of the

Anderson Hamiltonian.

Firstly, Hat is discussed. We impose that the on-site energies ǫm obey restrictions

of symmetry, i.e. have two values which will be denoted by ǫe and ǫt for eg and t2g. In

the correlation term, Umm′ is a symmetric block matrix of the form
(
Uee Uet

Uet Utt

)
. (16)



Band selection and disentanglement 14

A usual mean-field factorization leads to the simplified Hamiltonian

HMF
at =

∑

mσ

ǫ̃mσnmσ (17)

where the modified atomic energies read

ǫ̃eσ = ǫe + Ueen̄eσ̄ + Uetn̄tσ̄ (18)

ǫ̃tσ = ǫt + Uttn̄tσ̄ + Uetn̄eσ̄. (19)

The right hand sides are identified with on-site energies of impurity Wannier functions,

for we take HMF
at = Himp. The electron number n̄eσ means the total mean occupancy of

eg symmetry orbitals with spin σ and similarly for the t2g states.

To build the Anderson Hamiltonian, the bare energies ǫm and Coulomb integrals

Umm′ must be determined. Since the occupancies can be obtained from (7) we face a

linear system of equations.

This system is underdetermined. We solve it by fixing the difference

∆ = ǫt − ǫe = 0.087eV (20)

which is the crystal field splitting of atomic levels that is calculated as the t2g − eg
splitting of bulk copper d-orbitals . Taking the 4× 4× 4 case, we obtain:

ǫe = −4.26eV, ǫt = −4.18eV, (21)

Uee = 1.63eV, Utt = 1.19eV, (22)

Uet = 0.51eV. (23)

Eventhough we are not aware of any estimation of the U for cobalt in bulk copper,

values reported in the literature for bulk Co are about 5 eV [7], and for cobalt adsorbed

on the (111) surface of gold [37] are 2.8 eV. We expect our values to be smaller than

the ones obtainable by the approach of [7]. The reason for this is that our approach

gives a rule to obtain an Anderson Hamiltonian from the MLWF Hamiltonian which

proceeds from our DFT calculation and hence has the known problems of the local and

semilocal exchange and correlation functionals in determining U (see for example [4]).

Namely, our U will correspond to the Hund’s rule exchange matrix element rather than

the electrostatic one appearing in LDA+U. Nevertheless, our values albeit smaller, are

comparable to other U values for Co. Indeed, Antonides and co-workers measured 1.2

eV for the U of Co as an impurity [38] in excellent agreement with our calculation. We

think that the main advantage of our approach is that it keeps the complete symmetry

and multi-orbital character of the original DFT calculation.

The construction of substrate and hybridization terms in (13) is straightforward

due to their one-particle form. Firstly, Hsubs is diagonalized, yielding the conduction

‖ In good agreement with the crystal field splitting in Ag and Au estimated in [[35]] of about 0.15 eV,

and in reference [36] of less than 0.1 eV.
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band energies ǫnk and Bloch states. In the next step, hoppings V and V† are transformed

accordingly, leaving us with the matrix elements Vnk,m between substrate Bloch states

and impurity Wannier functions.

The essentially complete description of the impurity - substrate mixing is included

in the hybridization function

Γmm′(ω) =
∑

nk

V ∗
nk,mVnk,m′δ(ω − ǫnk), (24)

whose diagonal elements Γmm give the spectral intensity of hybridization of a given

impurity Wannier function m. The elements Γmm(0) give (apart from a 2π factor) the

inverse lifetime of an impurity electron. Off-diagonal terms provide substrate mediated

intra-atomic hybridization intensity. The function Γmm′(ω) is precisely − 1
π
times the

imaginary part of the retarded self-energy due to hybridization.

So far we have tacitly omitted spin polarization inherent in the matrices Hsubs, V

and V†, coming from a spin polarized Kohn-Sham DFT. The hybridization function

calculated for majority and minority spin directions is given in figure 6. Off-diagonal

eg − t2g matrix elements were omitted, for we found they are of the order of a few meV.

The same holds for elements between different Wannier functions of the same symmetry.

We see that all intensities have the same order of magnitude. The t2g functions become

much stronger for unoccupied substrate levels. The hybridization for minoritary spin

is weaker than the majoritary-spin one. The most pronounced difference is between

the eg ↑ and eg ↓ curves. The differences between hybridization functions for different

spins partially reflect the polarization of the copper matrix by the magnetic moment of

cobalt.
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3.3. Surface studies: the case of Cu (111)

Figure 7 shows the comparison of the ab-initio band structure for the Cu (111) and

the MLWF interpolated ones. The disentangling scheme has permitted us to retain the

electronic structure with sp character about the Fermi energy. As a consequence neither

the d-bands nor the upper limit of the LL’ gap (Γ̄ for the surface Brillouin zone) are

described by the MLWF. However, the electronic structure in the inner energy window

is perfectly reproduced.

In particular, we underline the excellent description of the Shockley surface state

by the MLWF basis set. The band structure is basically indistinguishable from the

ab-initio one which in turn is a very good description of the experimental one [32].

The minimization procedure leads to two types of differentiated MLWF sets, one set

describing the bulk electronic structure with a spread of Ω = 3.3 Å2 and a surface

MLWF with Ω = 5.7 Å2 and its original center displaced by 0.21 Å into the vacuum

region. Hence, the MWLF try to follow the behavior of the PAO basis [32] where the

energy minimization was improved by using two distinct basis sets, one for the bulk

electronic structure and one for the surface with diffuse orbitals. Indeed, not only does

the surface MLWF reproduce the surface state dispersion (minimum at E0 = −0.34 eV,

and effective mass m∗ = 0.335 in electron masses, in good agreement with E0 = −0.42

eV and m∗ = 0.37 of reference [32]) but it also shifts into the vacuum region in order to

account for the surface spilling of charge.

The interpolated bands can be analyzed in terms of the MLWF character they have.

Figure 7 depicts in a color code the character of the interpolated bands. In this way we

find that the Shockley surface state is basically purely described by the surface MLWF

near Γ̄. As we move away from Γ̄, the surface state has some bulk MLWF weight, until

it reaches the gap edge and it becomes a surface resonance with a large bulk MLWF
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character.

Outside the inner energy window, the bulk MLWF has more weight. Indeed, the

lowest and highest energy bands are described by the bulk MLWF. This signals that

in this slab geometry, the electronic structure has mainly a surface character and bulk

MLWF are the least indicated to describe the slab electronic structure.

The MLWF’s correspond to s-like orbitals. A consequence of this is the

disentanglement of the electronic structure as seen in figure 7. There, we see that

the MLWF band structure spans from the bottom of the conduction band and crosses

the d-band without mixing with it. Even outside the inner energy window, the MLWF-

bands excellently reproduce the sp-bands. The description considerably worsens outside

the interpolating inner energy window.

4. Summary and conclusions

We have implemented an interface to the scheme of [12] to obtain a finite set of

maximally-localized Wannier functions (MLWF’s) from calculations using the Siesta

code [13].

The method yields an efficient band disentanglement in the case of Co impurities

in bulk Cu. We have been able to retain just an s-like band to represent the Cu

electronic structure, while keeping most of the correct description of the Co electronic

structure. As a consequence, we have analyzed the magnetic properties in the limit of

small concentration of Co impurities, and trace back most of the Co properties to the

ones described by a single MLWF, doubly degenerated with eg symmetry.

The reduction of the electronic structure to a few important elements is of great

interest to obtain model Hamiltonians from full DFT calculations. We show that we can

map the MLWF Hamiltonian into an Anderson model, having access to on-site energies,

exact hybridization matrix elements and intra-atomic Coulomb matrix elements that

reflect the correct symmetry of the problem. We show that by using this scheme, we

obtain values of the intra-atomic Coulomb matrix that correspond to the semilocal

exchange and correlation functional, and hence to the Hund’s rule exchange, that are

slightly smaller than the electrostatic ones obtained in LDA+U schemes [4, 5, 6]. These

results are encouraging for future studies of strongly correlated systems using MLWF.

Even in the more stringent case of surface electronic structure, the description in

terms of MLWF give very good results. We have applied the computational scheme to

the Cu (111) surface and inside the chosen inner energy window the interpolation of the

band structure is excellently reproducing the Shockley surface state with an accuracy

comparable to the complete calculation of reference [32], and permitting us to obtained

the sp-band disentangled from the Cu d-bands. In this way, the electronic structure

problem is limited to the sp-electronic structure about the Fermi energy.

The surface case shows that not only is the MLWF method a mathematical trick

to disentangle bands and reduce the problem to a smaller, tight-binding like, basis

set. Indeed, one can analyze the obtained electronic structure in terms of the MLWF
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and have interesting insight. We have projected the electronic bands in the two types

MLWF of the surface problem: the surface and the bulk MLWF’s. In this way, we have

verified the mainly surface character of the Shockley state near the Γ̄ point, as well as

its subsequent mixing with the bulk MLWF as the surface state energy increases, until

it becomes a surface resonance.

In conclusion, we have implemented an interface to the scheme [12] to obtain a

finite set of maximally-localized Wannier functions from calculations using the SIESTA

code [13]. In this way, we can obtain DFT-based model Hamiltonians from ab-initio

calculations with a very accurate description of the electronic structure inside a chosen

energy window, that lends itself to the analysis and exploration of complex systems.
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[32] S. Garćıa-Gil, A. Garćıa, N. Lorente, and P. Ordejón. Optimal strictly localized basis sets for

noble metal surfaces. Physical Review B, 79(7):75441, 2009.

[33] H. Weng, T. Ozaki, and K. Terakura. Revisiting magnetic coupling in transition-metal-benzene

complexes with maximally localized Wannier functions. Physical Review B, 79(23):235118, 2009.
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