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PACS. 68.55.Jk – Structure and morphology; thickness; crystalline orientation and texture.
PACS. 68.37.Ef – Scanning tunneling microscopy (including chemistry induced with STM).
PACS. 81.15.Hi – Molecular, atomic, ion, and chemical beam epitaxy.

Abstract. – The growth of 3,4,9,10-perylenetetracarboxylic-dianhydride (PTCDA) on Cu(110)
has been investigated by STM in the range of a few up to more than 20 molecular layers. It
is found to grow in the Stranski-Krastanov mode leading to well-ordered mesa-type crystalline
grains of different structure and orientation relative to the substrate. By operating a scanning
tunneling microscope at a low tunneling current of 2 pA, we were able to resolve the individual
molecules on the flat top of the crystallites as well as on the facets descending to the sub-
strate. As will be shown, this offers the unique possibility to determine unambiguously the
three-dimensional structure. For a given grain a detailed analysis will be presented yielding
the unit cell and the relative displacement between subsequent layers.

Introduction. – Scanning tunneling microscopy offers the unique possibility to analyze
in real space the arrangement of atoms or molecules at a surface. This has been first demon-
strated by Binnig et al., e.g., for the Si(111) 7 × 7 surface [1]. Since then this technique has
been applied with great success for a huge number of different surfaces. Due to the principle of
operation only the outermost layers of the sample may be analyzed. In spite of this limitation
the three-dimensional structure of a crystallite may be identified if the facets may be imaged
with atomic or molecular resolution. This has been demonstrated for inorganic clusters, e.g.,
of Ge on Si(100) [2], of Pd [3,4] or Ag [5]. In this paper we present the study of crystallites of
organic molecules. The three-dimensional structure which was not known beforehand could
be determined from the data obtained by STM. The growth of organic molecules on inorganic
substrates is of major interest because of possible application in molecular electronic devices,
e.g., organic light-emitting diodes. In order to reduce the recombination of charge carriers it
is desirable to obtain a defect-free epitaxial growth on inorganic substrates. Since PTDCA is
a rigid, planar and very stable molecule it serves as a prototype for this kind of investigations.
Thin layers of PTCDA have been analyzed mainly by low-energy electron diffraction and by
scanning tunneling microscopy (STM) for a variety of substrates [6–12].

So far the analysis of organic films by STM has been concentrated on low coverage, i.e.

monolayers. Only a few examples have been reported for more than one layer. Cuberes et
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al. [13] analyzed C60 on a monolayer of dimethyl-bianthron on Cu(111). Epitaxial growth of
two planar molecules has been demonstrated by Schmitz-Hübsch et al. [14] for PTCDA on
hexabenzocoronene and by Staub et al. [15] for PTCDA on decanethiol. A coverage of up to
3.5 monolayers has been analyzed by Chizhov et al. [16] for PTCDA on Au(111).

Exploiting the capability of our STM to work at very low tunneling current we report in
the present paper on the investigation of PTCDA on Cu(110) at much higher coverage. The
films exhibit a very clear example of “Stranski-Krastanov growth”; hence after the formation
of one or two monolayers the formation of 3D islands begins. This provides a unique possibility
to analyze in detail the structure of multilayers. Since the edges of the islands are sloped,
not only the number of layers may be counted but also the relative positions of the different
layers may be determined.

Experimental. – The experiments have been performed in an ultra-high vacuum system
consisting of separate chambers for sample preparation and characterization. The Cu(110)
substrate has been prepared by repeated cycles of sputtering of a single crystal with Ar+

ions (1.4 keV, 10µA/cm2) and thermal annealing to 820K. The result of this procedure was
checked by XPS and by STM. The PTCDA molecules have been evaporated from a small
self-built crucible kept at a temperature of 510K providing a flux of about 4 monolayers/min
at the sample. Prior to the measurements, the flux of particles has been carefully checked
by a quadrupole mass spectrometer. For the results presented in this paper the equivalent of
10–40 monolayers has been deposited. The films have been thermally annealed using a linear
temperature ramp (1K/s) ending at 510K. This results in a loss of about 10% of the material.
The samples have been transferred in situ to a home-built STM, which is optimized to provide
a minimal electric noise by capacitive pick-up of line frequency etc. In combination with a
self-built current-to-voltage converter it allows to operate the STM at a tunneling current
down to 1 pA using a bandwidth of 30 kHz. For the given experiments a typical current of
2 pA has been used. The STM was calibrated by the investigation of the clean Cu(110) prior
to the measurement of the molecular layers.

Results. – If about 20 monolayers of PTCDA are deposited on Cu(110) and if the film
is annealed to 510K, small crystals with a typical size of about 100 nm are formed. They
appear as truncated pyramids, which are mostly separated by areas covered by a thin layer
of PTCDA, which exhibits no significant order. The top layer always has the form of an
irregular hexagon. The orientation and the form vary between the different grains. The
slopes are relatively shallow enabling the detailed investigation by STM. Figure 1 displays a
crystallite formed by nineteen plus about two wetting molecular layers. Since the conductivity
on top is rather low, only a very tiny tunneling current of 1.8 pA at U = −2V at the tip could
be applied. The displayed area is 94 × 94 nm2; the height of the formation is about 7.5 nm.
The latter cannot be exactly evaluated because the clean substrate cannot be accessed. To
analyze the geometric structure, a top view of the same data is given in fig. 2. It can be
readily seen that the borderlines of the top layer are parallel to the ones on the opposite site.
Furthermore the four angles, which are denoted δ in the figure, amount to 123◦ and agree
within the experimental uncertainty.

In order to explain this geometry small areas of the top layer have been investigated in
more detail. Figure 3 shows the real-space image (a), the Fourier transform (b) and a tentative
model of the molecular arrangement within the unit cell (c). The real-space image as well as
the Fourier transform clearly reveal a rectangular unit cell with a dimension of a = 12.5 Å and
b = 19.5 Å. The short a-axis is parallel to the rows, which are visible in (a). In the following
discussion ~a will serve as reference to which all other directions will refer. A preliminary
analysis shows that the molecular unit cell is rotated by about 5◦ counterclockwise with
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Fig. 1 Fig. 2

Fig. 1 – Pseudo–three-dimensional representation of a crystallite of PTCDA grown on Cu(110). The
size of the displayed area is 94 × 94 nm2; the height of the crystal is approximately 7.5 nm. In order
to visualize details of the facets shading has been applied.

Fig. 2 – Top view representation of the data of fig. 1. To analyze the geometric structure, the facets
have been labeled; furthermore, various angles have been marked.

respect to the atomic lattice of the substrate, i.e. ~a vs. [100] and ~b vs. [11̄0]. Since tg δ = b
a
,

the geometry of the borderlines is easily understood. Those corresponding to the facets I, III
and IV, VI are parallel to the two diagonals; the two other are parallel to the short axis of
the unit cell. Boundary lines parallel to the long axis have not been found. The fact that
the diagonals act as edge appears plausible if one considers the arrangement of the molecules
within the unit cell. Figure 3c shows a model, which agrees with the various observations.
There are two molecules per unit cell which are rotated by about 90◦ with respect to each other.
This arrangement is energetically favorable due to the quadrupole moment of the molecule. It
resembles the “herringbone structure” found for the [102]-plane of the bulk structure [17] or,
e.g., for monolayers of PTCDA on Ag(111) [10]. However, it should be mentioned that from
the observations it was neither possible to evaluate the orientation to a high accuracy nor to
exclude a tilt of the molecules with respect to the plane of the unit cell.

The patterns on the different facets indicate that the crystallite is formed by a regular

Fig. 3 – Analysis of the top layer: a) topography of an area of 27 × 17 nm2; b) Fourier transform
displaying the corresponding reciprocal lattice; c) model for the arrangement of the molecules in the
top layer.
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Fig. 4 – Cross-sections of the grain taken perpendicular to the facets, I-IV, VI-III and V-II.

Fig. 5 – STM-images resolving the molecular arrangement of the facets I to VI. No shading has been
applied to avoid the accentuation of specific directions. A planar background has been subtracted
individually.

stacking of subsequent layers. Since the ordering continues up to the top layer it may be as-
sumed that the different layers have the same lattice as the top layer, which has been discussed
above. If the layers were stacked without a lateral displacement between the subsequent unit
cells the ordering of the facets should be described by the same lateral periodicity and angles,
which is obviously not the case. To reconstruct the three-dimensional arrangement of the
crystal we first consider the inclination of the facets, which can be deduced from the cross-
sections displayed in fig. 4. It shows three cross-sections, which have been chosen at right
angles to the borderlines I-IV, II-V and III-VI. The inclinations for the facets have been listed
in table I. It should be noted that the experimental uncertainty of about 3◦, which may be
estimated by comparing different measurements, is relatively large. A first estimate on how
the facets are formed may be obtained if one combines the slope with the height of a single
layer. The latter has been determined by the analysis of the “staircase”, e.g. of facet VI to 3.5
±0.3 Å which roughly agrees with the findings for the bulk structures [17]. Assuming that one
step down is associated to the addition of one unit cell in lateral direction, the slope for the
facets can be calculated in the absence of a lateral displacement. For the facets I, III, IV and

Table I

Facet Inclination γ (◦) tg γ

I 16 0.29
II 17 0.31
III 22 0.40
IV 27 0.51
V 26 0.49
VI 16 0.29
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Fig. 6 – Geometric construction of the displacement of adjacent layers.

Fig. 7 – Model for the arrangement of the molecules within the crystal. For simplicity, the molecules
have been represented by rectangles. To explain the characteristic directions observed on the facets
lines connecting the “corners” of the molecules have been drawn. The dotted lines correspond to the
a-direction.

VI the distance between adjacent diagonals in the lattice has to be considered which is given
by d = a·b√

a2+b2
= 10.5 Å. This yields a slope of tg γ = 0.33 which corresponds to γ = 18◦.

This value is larger than the one found for I and VI and smaller than the one for III and
IV. This indicates a displacement to the upper left when going downwards. Nevertheless, it
remains reasonable to assume the addition of one unit cell per layer. Applying the equivalent
argumentation for the facets II and V leads to a prediction, which is wrong. The addition of
one unit cell perpendicular to the short axes would result in a shift of b = 19.5 Å or a slope
of tg γ = 0.18 or γ = 10◦. This is definitely smaller than the observed values for II and V
and may not be explained by a displacement between the layers. By looking at the molecular
unit cell it is suggested that only half of a unit cell is added in the b or −b direction going one
step down the facets II and V, respectively. This yields tg γ = 0.36 or γ = 20◦, which falls
between the observed values. Hence, taking a displacement into account this may describe
the observation.

The key to access the displacement lies in the observed “directions” in the molecular
resolved images of the facets. Four (six) important directions are shown in fig. 2 and in fig. 5.

Table II

Angle (◦)

ϕI,VI 7
ϕII 74

ϕIII,IV 11
ϕV 65
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Table III

Å

a 12.5 ± 0.7
b 19.5 ± 0.7
∆a (−)2.8 ± 0.5
∆b 2.0 ± 0.5
c (spacing of adjacent layers) 3.5 ± 0.5

The angles relative to the directions of the short axes of the unit cell are summarized in
table II. Within the experimental uncertainty of about ±1◦ the angles ϕI and ϕVI as well
as ϕIII and ϕIV agree. Based on these assumptions made above, the displacement may be
obtained by a simple geometric construction, as has been depicted in fig. 6. The strong solid
black line depicts the unit cell of the top or upper layer, the circle denotes the origin. The gray
lines extend the corresponding lattice. The essential part consists in finding the starting points
at which the lines corresponding to the observed directions start. On the facets the observed
spacing is given by the displacement of subsequent layers plus the additional unit cell (or half
of it). Since we are only interested in the displacement between subsequent layers, the effect
of the additional unit cell is taken care of by shifting by one lattice vector (“folding back”) in
the opposite direction. E.g., for the facets III and IV one unit cell is added to the right, hence
in our construction the starting point is shifted by one lattice to the left and the angle ϕIII,IV

defines the corresponding line. The same applies for ϕI,VI with the opposite shift. The point
at which the lines intersect marks the displacement of the unit cell of the lower layer with
respect to the origin of the upper. However, to achieve a reasonable accuracy the intersecting
lines should be at about right angle. Furthermore, the intersections of additional lines yield
an estimate of the error margin. Since for the slopes II and V only half a unit cell is added and
since the second molecule is centered within the unit cell, the corresponding starting point is
offset by half a lattice vector both in the a- and b-direction. In doing so, five more intersections
are obtained. All of them fall in a very small region. The circle around the intersections has
a radius of 0.5 Å, which is a rather conservative estimate of the error. The displacement is
−2.8 Å in the a-direction and 2.0 Å in the b-direction. The dotted lines mark the position
of the lower unit cell. The observed three-dimensional arrangement of the molecules, which
is summarized in table III, exhibits a layered structure with a rectangular unit cell. For
comparison to the observed topography of the crystallite fig. 7 shows a model representing
the molecular arrangement of the facets. For the sake of simplicity, the molecules have been
sketched by rectangles. If one compares the findings with the known bulk structure determined
by electron diffraction [17], these layers may be identified with the [102]-plane of the α- or β-
structure. The dimension of the unit cell is close to the projection of the one of the α-phase on
the [102]-plane, which has a = 11.96 Å and b = 19.91 Å. However, the stacking is significantly
different. In the α-phase only a shift in the b-direction of 1.9 Å and none along the a-direction
is found. From previous studies of the monolayer growth [18] on the same substrate it is known
that there is a strong interaction between the molecules and the substrate. Apparently, the
influence of the substrate may be transferred over several layers inducing a three-dimensional
structure, which differs from the bulk even for a crystal of 20 layers. It should be noted that
the discussed structure is only one of several ones, which could be identified on the same
sample [19]. A similar complexity of structures has been found by grazing-incidence X-ray
diffraction for films of 200 Å PTCDA on Ag(111) [20]. The advantage of the method applied
in the present paper is the capability to analyze individual crystallites independently. The
size of the grain may be fairly small; for the given example it is below 100 nm.
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Summary. – If a material grows with a microcrystalline structure on a surface, the three-
dimensional structure of individual grains may be identified by means of STM (or AFM) if
the top layer and at least one facet may be atomically or molecularly resolved. This is demon-
strated for the example of the organic molecule PTCDA on Cu(110). For the given preparation
it forms truncated hexagonal pyramids with rather shallow slopes. All the facets could be
molecularly resolved allowing an unambiguous identification of the molecular arrangement.
The crystallite is formed by planes in which the molecules form a “herringbone structure”
with rectangular unit cell. The subsequent layers are laterally offset in the direction of the
short as well as in the direction of the long axis. The structure resembles the known α- and
β-structure of the bulk. However, there is a marked difference of the displacement between
adjacent layers.
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