181 research outputs found

    Progress of the Felsenkeller shallow-underground accelerator for nuclear astrophysics

    Full text link
    Low-background experiments with stable ion beams are an important tool for putting the model of stellar hydrogen, helium, and carbon burning on a solid experimental foundation. The pioneering work in this regard has been done by the LUNA collaboration at Gran Sasso, using a 0.4 MV accelerator. In the present contribution, the status of the project for a higher-energy underground accelerator is reviewed. Two tunnels of the Felsenkeller underground site in Dresden, Germany, are currently being refurbished for the installation of a 5 MV high-current Pelletron accelerator. Construction work is on schedule and expected to complete in August 2017. The accelerator will provide intense, 50 uA, beams of 1H+, 4He+, and 12C+ ions, enabling research on astrophysically relevant nuclear reactions with unprecedented sensitivity.Comment: Submitted to the Proceedings of Nuclei in the Cosmos XIV, 19-24 June 2016, Niigata/Japa

    Dynamic proteomic profiling of a unicellular cyanobacterium Cyanothece ATCC51142 across light-dark diurnal cycles

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Unicellular cyanobacteria of the genus <it>Cyanothece </it>are recognized for their ability to execute nitrogen (N<sub>2</sub>)-fixation in the dark and photosynthesis in the light. An understanding of these mechanistic processes in an integrated systems context should provide insights into how <it>Cyanothece </it>might be optimized for specialized environments and/or industrial purposes. Systems-wide dynamic proteomic profiling with mass spectrometry (MS) analysis should reveal fundamental insights into the control and regulation of these functions.</p> <p>Results</p> <p>To expand upon the current knowledge of protein expression patterns in <it>Cyanothece </it>ATCC51142, we performed quantitative proteomic analysis using partial ("unsaturated") metabolic labeling and high mass accuracy LC-MS analysis. This dynamic proteomic profiling identified 721 actively synthesized proteins with significant temporal changes in expression throughout the light-dark cycles, of which 425 proteins matched with previously characterized cycling transcripts. The remaining 296 proteins contained a cluster of proteins uniquely involved in DNA replication and repair, protein degradation, tRNA synthesis and modification, transport and binding, and regulatory functions. Functional classification of labeled proteins suggested that proteins involved in respiration and glycogen metabolism showed increased expression in the dark cycle together with nitrogenase, suggesting that N<sub>2</sub>-fixation is mediated by higher respiration and glycogen metabolism. Results indicated that <it>Cyanothece </it>ATCC51142 might utilize alternative pathways for carbon (C) and nitrogen (N) acquisition, particularly, aspartic acid and glutamate as substrates of C and N, respectively. Utilization of phosphoketolase (PHK) pathway for the conversion of xylulose-5P to pyruvate and acetyl-P likely constitutes an alternative strategy to compensate higher ATP and NADPH demand.</p> <p>Conclusion</p> <p>This study provides a deeper systems level insight into how <it>Cyanothece </it>ATCC51142 modulates cellular functions to accommodate photosynthesis and N<sub>2</sub>-fixation within the single cell.</p

    In vivo biomolecular imaging of zebrafish embryos using confocal Raman spectroscopy

    Get PDF
    Zebrafish embryos provide a unique opportunity to visualize complex biological processes, yet conventional imaging modalities are unable to access intricate biomolecular information without compromising the integrity of the embryos. Here, we report the use of confocal Raman spectroscopic imaging for the visualization and multivariate analysis of biomolecular information extracted from unlabeled zebrafish embryos. We outline broad applications of this method in: (i) visualizing the biomolecular distribution of whole embryos in three dimensions, (ii) resolving anatomical features at subcellular spatial resolution, (iii) biomolecular profiling and discrimination of wild type and ΔRD1 mutant Mycobacterium marinum strains in a zebrafish embryo model of tuberculosis and (iv) in vivo temporal monitoring of the wound response in living zebrafish embryos. Overall, this study demonstrates the application of confocal Raman spectroscopic imaging for the comparative bimolecular analysis of fully intact and living zebrafish embryos

    A Day in the Life of Microcystis aeruginosa Strain PCC 7806 as Revealed by a Transcriptomic Analysis

    Get PDF
    The cyanobacterium, Microcystis aeruginosa, is able to proliferate in a wide range of freshwater ecosystems and to produce many secondary metabolites that are a threat to human and animal health. The dynamic of this production and more globally the metabolism of this species is still poorly known. A DNA microarray based on the genome of M. aeruginosa PCC 7806 was constructed and used to study the dynamics of gene expression in this cyanobacterium during the light/dark cycle, because light is a critical factor for this species, like for other photosynthetic microorganisms. This first application of transcriptomics to a Microcystis species has revealed that more than 25% of the genes displayed significant changes in their transcript abundance during the light/dark cycle and in particular during the dark/light transition. The metabolism of M. aeruginosa is compartmentalized between the light period, during which carbon uptake, photosynthesis and the reductive pentose phosphate pathway lead to the synthesis of glycogen, and the dark period, during which glycogen degradation, the oxidative pentose phosphate pathway, the TCA branched pathway and ammonium uptake promote amino acid biosynthesis. We also show that the biosynthesis of secondary metabolites, such as microcystins, aeruginosin and cyanopeptolin, occur essentially during the light period, suggesting that these metabolites may interact with the diurnal part of the central metabolism

    First direct limit on the 334 keV resonance strength in the 22^{22}Ne({\alpha},{\gamma})26^{26}Mg reaction

    Get PDF
    In stars, the fusion of 22^{22}Ne and 4^4He may produce either 25^{25}Mg, with the emission of a neutron, or 26^{26}Mg and a Îł\gamma ray. At high temperature, the (α,n\alpha,n) channel dominates, while at low temperature, it is energetically hampered. The rate of its competitor, the 22^{22}Ne(α\alpha,Îł\gamma)26^{26}Mg reaction, and, hence, the minimum temperature for the (α,n\alpha,n) dominance, are controlled by many nuclear resonances. The strengths of these resonances have hitherto been studied only indirectly. The present work aims to directly measure the total strength of the resonance at EE_{r} = \,=\,334 \,keV (corresponding to EE_{x} = \,=\,10949 \,keV in 26^{26}Mg). The data reported here have been obtained using high intensity 4^4He+^+ beam from the INFN LUNA 400 kV underground accelerator, a windowless, recirculating, 99.9% isotopically enriched 22^{22}Ne gas target, and a 4π\pi bismuth germanate summing Îł\gamma-ray detector. The ultra-low background rate of less than 0.5 counts/day was determined using 67 days of no-beam data and 7 days of 4^4He+^+ beam on an inert argon target. The new high-sensitivity setup allowed to determine the first direct upper limit of 4.0 × \,\times\,10−11^{-11} eV (at 90% confidence level) for the resonance strength. Finally, the sensitivity of this setup paves the way to study further 22^{22}Ne(α\alpha,Îł\gamma)26^{26}Mg resonances at higher energy.Comment: Submitted to Eur. Phys. J.

    The Effects of Hydrogen Peroxide on the Circadian Rhythms of Microcystis aeruginosa

    Get PDF
    Background: The cyanobacterium Microcystis aeruginosa is one of the principal bloom-forming cyanobacteria present in a wide range of freshwater ecosystems. M. aeruginosa produces cyanotoxins, which can harm human and animal health. Many metabolic pathways in M. aeruginosa, including photosynthesis and microcystin synthesis, are controlled by its circadian rhythms. However, whether xenobiotics affect the cyanobacterial circadian system and change its growth, physiology and biochemistry is unknown. We used real-time PCR to study the effect of hydrogen peroxide (H2O2) on the expression of clock genes and some circadian genes in M. aeruginosa during the light/dark (LD) cycle. Results: The results revealed that H 2O 2 changes the expression patterns of clock genes (kaiA, kaiB, kaiC and sasA) and significantly decreases the transcript levels of kaiB, kaiC and sasA. H2O2 treatment also decreased the transcription of circadian genes, such as photosynthesis-related genes (psaB, psbD1 and rbcL) and microcystin-related genes (mcyA, mcyD and mcyH), and changed their circadian expression patterns. Moreover, the physiological functions of M. aeruginosa, including its growth and microcystin synthesis, were greatly influenced by H 2O 2 treatment during LD. These results indicate that changes in the cyanobacterial circadian system can affect its physiological and metabolic pathways. Conclusion: Our findings show that a xenobiotic can change the circadian expression patterns of its clock genes t

    The study of atmospheric ice-nucleating particles via microfluidically generated droplets

    Get PDF
    Ice-nucleating particles (INPs) play a significant role in the climate and hydrological cycle by triggering ice formation in supercooled clouds, thereby causing precipitation and affecting cloud lifetimes and their radiative properties. However, despite their importance, INP often comprise only 1 in 10³–10⁶ ambient particles, making it difficult to ascertain and predict their type, source, and concentration. The typical techniques for quantifying INP concentrations tend to be highly labour-intensive, suffer from poor time resolution, or are limited in sensitivity to low concentrations. Here, we present the application of microfluidic devices to the study of atmospheric INPs via the simple and rapid production of monodisperse droplets and their subsequent freezing on a cold stage. This device offers the potential for the testing of INP concentrations in aqueous samples with high sensitivity and high counting statistics. Various INPs were tested for validation of the platform, including mineral dust and biological species, with results compared to literature values. We also describe a methodology for sampling atmospheric aerosol in a manner that minimises sampling biases and which is compatible with the microfluidic device. We present results for INP concentrations in air sampled during two field campaigns: (1) from a rural location in the UK and (2) during the UK’s annual Bonfire Night festival. These initial results will provide a route for deployment of the microfluidic platform for the study and quantification of INPs in upcoming field campaigns around the globe, while providing a benchmark for future lab-on-a-chip-based INP studies
    • 

    corecore