338 research outputs found

    Diachronous exhumation of HP-LT metamorphic rocks from southwestern Alps: evidence from fission-track analysis

    Get PDF
    International audienceNew fission-track ages on zircon and apatite (ZFT and AFT) from the southwestern alpine paleo-accretionary wedge document a contrasting cooling history from east to west. In the eclogitic Monviso ophiolites, the ZFT ages are 19.6 +/- 0.8 Ma and the AFT ages are 8.6 +/- 1.7 Ma. In the HT-blueschist eastern Queyras, ZFT ages range from 27.0 +/- 1.5 Ma to 21.7 +/- 1.6 Ma and AFT ages from 14.2 +/- 2.0 to 9.4 +/- 1.1 Ma. In the LT-blueschist western Queyras, ZFT ages are between 94.7 +/- 3.1 Ma and 63.1 +/- 2.9 Ma and AFT ages are between 22.2 +/- 1.6 and 22.6 +/- 1.5 Ma. The Chenaillet ophiolite yields ages of 118.1 +/- 3.7 Ma on ZFT and of 67.9 +/- 8.5 Ma on AFT. These new FT data combined with petrological and geochronological constraints record a diachronous exhumation in the paleo-accretionary wedge during subduction and collision

    Diachronous evolution of the alpine continental subduction wedge: evidence from P-T estimates in the Briançonnais Zone houillère (France - Western Alps).

    Get PDF
    International audienceThe study of continental subduction processes requires detailed Pressure Temperature (P-T) paths to understand the kinematic of burial and exhumation of continental units. In the French Western Alps, the Briançonnais zone is a remnant of the continental subduction wedge. P-T conditions have been estimated in its most internal parts, but there is a lack of data in the western part, known as the "Zone houillère". This Briançonnais Zone houillère is classically divided into two sub-units: the upper and lower Houiller units. This study focuses on both of these in the Clarée valley, north of Briançon. In this low-grade metamorphic terrain, estimation of P-T history is complicated because there are few adapted methods and these rocks have a poor metamorphic mineralogical content, including detrital metamorphic minerals inherited from their hercynian history. Therefore, to acquire accurate P-T estimates a multi-method approach is required, involving qualitative and quantitative Raman study of Carbonaceous Material (RSCM), chemical analysis from quantified X-ray maps and thermodynamic modelling of chlorites and K-white micas. Such multi-approach P-T estimates on a sandstone sample allow distinguishing hercynian peak metamorphic conditions of 371 ± 26°C and 3.5 ± 1.4 kbar and alpine peak metamorphic conditions of 275 ± 23°C and 5.9 ± 1.7 kbar. These results are consistent with our RSCM and Tmax estimates. Raman study conducted on organic-rich schist samples shows an eastward increase of the alpine Tmax in the upper Houiller unit, from 280 to 300°C across the Briançonnais Zone houillère. In contrast, carbonaceous material included in detrital grains of muscovite in the sandstone exhibits higher temperatures. This hercynian Tmax is estimated using thermodynamic modelling at 376 ± 50°C. According to these results and previous work in more internal parts of the Briançonnais zone, a geodynamic reconstruction is proposed, which is characterized by a diachronous evolution of the Briançonnais zone involved in alpine continental subduction at different times. The geothermal gradient in the Briançonnais zone changes from 8°C/km during early continental subduction, to 40°C/km during the collisional event at about 35-30 Ma. The intermediate gradient of 15°C/km estimated in the Briançonnais Zone houillère suggests that this unit was buried later, than the more internal Briançonnais units, after 40 Ma

    Source tracing of detrital serpentinite in the Oligocene molasse deposits from the western Alps (BarrĂŞme basin): implications for relief formation in the internal zone.

    Get PDF
    International audienceWe present the first contribution of tracing the source area of ophiolitic detritus in the Alpine molasses by Raman spectroscopy. The lower Oligocene molasse deposits preserved in the Barrême basin, in the SW foreland of the western Alpine arc, are known for the sudden arrival of the first "exotic" detritus coming from the internal Alpine zones. Among them, the pebbles of serpentinized peridotites have so far not been studied. We show that they only consist of antigorite serpentinite, implying that they originate from erosion of HT-blueschists. In contrast, the upper Oligocene/lower Miocene molasse, shows mixed clasts of serpentine including antigorite and lizardite without any evidence of chrysotile. This suggests that they were derived from a less metamorphosed unit such as the LT-blueschist unit. Taking into account the sediment transport direction in the basin and the varied metamorphic characteristics of the other ocean-derived detritus, we constrain the lithological nature of the source zones and the location of the relief zones, identified as the internal Alps, SE of the Pelvoux external crystalline massif. Available structural data and in situ thermochronological data allow reconstructing the Oligocene to early Miocene collisional geometry of the Paleogene subduction wedge. This phase corresponds to two major phases of uplift evolving from a single relief zone located above the Ivrea body during the early Oligocene and persisting up to the early Miocene; then during the late Oligocene/early Miocene a second relief zone developed above the Briançonnais zone. At that time, the internal western Alps acquired its double vergency

    The Monviso ophiolitic massif (Western Alps), a section through a serpentinite subduction channel.

    Get PDF
    The exhumation of subducted lithosphere requires a mechanically weak zone at the interface between the subduction plane and the rigid overlying mantle peridotites with a viscosity greater than 10 20 Pa.s. At shallow depths (< 40-50 km) blueschists are exhumed in accretionary wedge along the interface between the subducting plate and the overriding plate (Platt, 1993). At greater depth, serpentinites plays the role of mechanically weak layer in cool continental subduction and act as the lubricant and produce a return flow for the exhumation of eclogitic rocks. The close association of serpentinites and eclogites in the Monviso massif (Western Alps) allow to discuss the concept of subduction serpentinite channel. We propose that the Monviso ophiolitic massif corresponds to a section of a 50 km long serpentinite channel in where eclogitic blocks were exhumed between 60 and 45 Ma and ended whEuropean continental margin was involved in the southeast dipping subduction zone

    Permafrost extension modeling in rock slope since the Last Glacial Maximum: application to the large SĂ©chilienne landslide (French Alps).

    Get PDF
    12 pagesInternational audienceRecent dating performed on large landslides in the Alps reveal that the initiation of instability did not immediately follow deglaciation but occurred several thousand years after ice down-wastage in the valleys. This result indicates that debuttressing is not the immediate cause of landslide initiation. The period of slope destabilization appears to coincide with the wetter and warmer Holocene Climatic Optimum, indicating a climatic cause of landslide triggering, although the role of seismic activity cannot be ruled out. A phenomenon which may partly explain the delay between valley deglaciation and gravitational instability is the temporal persistence of thick permafrost layers developed in the Alps since the Last Glacial Maximum (LGM). This hypothesis was tested through 2D thermal numerical modeling of the large SĂ©chilienne landslide (Romanche valley, French Alps) using plausible input parameter values. Simulation results suggest that permafrost vanished in the SĂ©chilienne slope at 10 to 11 ka, 3,000 to 4,000 years following the total ice down-wastage of the Romanche valley at 14.3 ka. Permafrost persistence could have contributed to the failure delay by temporally strengthening the slope. Numerical simulations also show that the permafrost depth expansion approximately fits the thickness of ground affected by gravitational destabilization, as deduced from geophysical investigations. These results further suggest that permafrost development, associated with an ice segregation mechanism, damaged the rock slope and influenced the resulting landslide geometry

    The influence of bedrock topography on the dynamics of two clayey landslides in the Trièves (French Alps)

    Get PDF
    International audienceThe two large adjacent landslides of Avignonet and Harmalière, affecting thick clayey quater- nary deposits, are located in the Trièves area (French Alps). Remote techniques (Lidar) and GPS measure- ments were used to characterize the two landslides. Results show major differences between the dynamics of the two landslides, both in morphology, displacement rate magnitudes and motion directions. Seismic noise measurements (H/V technique) were performed to map the clay layer thickness. Combined with Lidar derived DEM, these data yielded the paleo-topography of the seismic substratum made of compact alluvial layers and Mesozoic bedrock. The difference in dynamics between the two landslides is likely to result from the pres- ence of a ridge of compact formations at the Avignonet landslide toe, preventing an eastward deep active slid- ing to develop and explaining the observed shallow slip surfaces. To the South, this buttress disappears at the Harmalière toe, favoring a deep sliding in a Southeastern direction with a fast regression of the headscarp, which evolves into a mudslide at its base

    Micro-cartographie P-T- dans les roches métamorphiques. Applications aux Alpes et à l'Himalaya

    Get PDF
    L'étude de la dynamique de la lithosphère, en particulier les processus de transports verticaux et horizontaux de matière, requiert de pouvoir reconstruire avec la plus grande précision l'évolution géodynamique des chaînes de montagne. C'est le rôle des trajets pression-température-temps-déformation (P-T-t-e) qui permettent, pour un fragment de roche, de reconstruire son histoire à partir de l'étude texturale et chimique des minéraux métamorphiques à l'équilibre. En effet, les roches métamorphiques présentent des mosaïques de paléo-équilibres thermodynamiques locaux entre des minéraux de paragénèses qui cristallisent à différentes conditions de pressions et de températures. Le problème abordé dans ce mémoire est celui de la reconstruction des trajets pression-température, en combinant l'utilisation d'approches thermobarométriques directes, comme les pseudosections calculées par minimisation d'énergie, et indirectes, comme la technique du multi-équilibre avec une vision en deux dimensions grâce à une approche micro-cartographique. Cependant, l'utilisation conjointe de techniques d'imagerie chimiques et d'estimations thermobarométriques requiert un grand nombre de calculs, et donc des logiciels conviviaux à la disposition de la communauté. Dans cette thèse, nous proposons des programmes pour la cartographie et les calculs thermodynamiques, puis un nouveau modèle de solution solide pour les chlorites et, enfin, des exemples d'applications dans les Alpes et en Himalaya. Nous avons développé un jeu de programmes écrits en Matlab, qui permettent (1) de traiter des images chimiques et de calculer des cartes pression-température : XMapTools, et (2) de chercher des équilibres thermodynamiques et de tracer des réactions chimiques : PT-lines, MultiPlot et Meamp. Un modèle de solution solide pour les chlorites a été proposé en ajoutant un pôle pur di-trioctahédriques. Ce modèle permet de calculer, par minimisation d'énergie, des pseudosections à basse température, ou encore de modéliser des interactions fluide-roche. Dans un deuxième temps, nous proposons d'appliquer les techniques de micro-cartographie et de thermobarométrie à des exemples naturels variés afin d'essayer d'apporter des contraintes supplémentaires pour reconstruire des modèles d'évolutions géodynamiques des chaînes de subduction-collision. Pour les Alpes, des trajets P-T-e et P-T-t ont été proposés pour des unités où jusqu'ici, faute de techniques disponibles, les estimations étaient basées uniquement sur la présence de minéraux index du métamorphisme. Ces nouvelles données ont permis de mettre en évidence un fort couplage entre l'exhumation du prisme océanique et l'écaillage crustal de la plaque continentale subduite. Pour l'Himalaya, nous avons montré qu'il est possible de reconstruire un trajet pression-température continu à partir d'images chimiques en utilisant notre nouvel outil : XMapTools.The study of the lithosphere dynamics such as vertical and horizontal material transport processes requires the detailed reconstruction of the geodynamic evolution of the mountain belts. These geodynamic models are classically constrained using pressure-temperature-time-deformation (P-T-t-e) paths unravelled from textural and chemical study of metamorphic rocks fragments. Metamorphic rocks are made by mosaic of local thermodynamic equilibria involving minerals that grew at different temporal, pressure, and temperature conditions. The topic of this thesis is the reconstruction of pressure-temperature paths by combining direct techniques such as pseudosection computed by energy minimization and inverse techniques such as multi-equilibrium, in space, i.e. two-dimensions, using a micro-mapping approach. The use of chemical images and thermodynamic modelling requires user-friendly programs freely available for the community. In this thesis, we first propose a set of programs and a new solid solution model for chlorite and also two application examples are proposed in the Alps and the Himalaya. We propose a set of programs written in Matlab (1) for microprobe image processing and the computation of pressure temperature maps: XMapTools, (2) for multi-equilibrium calculations using different thermodynamic data and solid solution models: PT-lines, MultiPlot and Meamp. A new solid solution model for chlorite is presented including a di-trioctahedral chlorite end-member. This model can be used to calculate pseudosection phase diagrams and for fluid-rock interaction modelling. Thermodynamic modelling and micro-mapping techniques are used together to add new constraints to the geodynamic models of subduction-collision mountain belts. In the French Western Alps, P-T-e and P-T-t paths are recovered for some metamorphic units in which the available estimates were only based on the occurrence of index minerals. These new thermobarometric and radiometric data indicate a strong coupling between the exhumation of the oceanic accretionary wedge and the continental subducting plate. In The Himalaya, we studied a new eclogite occurrence and we propose a detailed and continuous P-T path calculated using our newly created program XMapTools.SAVOIE-SCD - Bib.électronique (730659901) / SudocGRENOBLE1/INP-Bib.électronique (384210012) / SudocGRENOBLE2/3-Bib.électronique (384219901) / SudocSudocFranceF

    Inventory of large landslides along the Central Western Andes (ca. 15°–20° S): Landslide distribution patterns and insights on controlling factors

    Get PDF
    Assessing risk of potential natural catastrophes in cities remains challenging, in particular as we need to elaborate quantitative criteria for exposure and vulnerability. Statistical and probabilistic methods have been applied to Arequipa, one of the most vulnerable Latin America cities. The second largest city of Peru is highly exposed to natural hazards: earthquakes, eruptions from the historically active El Misti volcano, rain-triggered flash floods and mass flows together with landslides from the RĂ­o Chili canyon walls. First, we propose a long-term probabilistic multi-hazard assessment for the Misti composite cone located 17 km from Arequipa. Second, we examine criteria for delineating areas prone to mass flow hazards and characterizing multiple sources of vulnerability forthe city. Third, a statistical methodology to better estimate damage probability for buildings is proposed

    Preparation of multi-allylic dendronized polymers via atom-transfer radical polymerization

    Get PDF
    International audienceAtom-transfer radical polymerization (ATRP) was investigated to polymerize a styrene monomer carrying carbosilane dendrons with 6 terminal allyl branches. Polymers with a monomodal molar mass distribution and low polydispersity have been produced, while by comparison the free-radical polymerization technique led to chain transfer early in the polymerization. Steric effect brought by the dendrons result in a slow polymerization rate, leading to an apparent saturation of the degree of polymerization. By pushing up the polymerization conditions (eg. increase of temperature or concentration), interchain couplings started to take place, most likely from reactions at the allyl branches. These results are very similar to the ones previously reported for the anionic polymerization of this same multi-allylic dendronized monomer. § present addresses: P.O. Schwartz, Alsachim SAS
    • …
    corecore