120 research outputs found

    Olfactory receptors are displayed on dog mature sperm cells

    Full text link
    Olfactory receptors constitute a huge family of structurally related G protein-coupled receptors, with up to a thousand members expected. We have shown previously that genes belonging to this family were expressed in the male germ line from both dog and human. The functional significance of this unexpected site of expression was further investigated in the present study. We demonstrate that a few dog genes representative of various subfamilies of olfactory receptors are expressed essentially in testis, with little or no expression in olfactory mucosa. Other randomly selected members of the family show the expected site of expression, restricted to the olfactory system. Antibodies were generated against the deduced amino acid sequence of the most abundantly expressed olfactory receptor gene in dog testis. The purified serum was able to detect the gene product (DTMT receptor) in late round and elongated spermatids, as well as in the cytoplasmic droplet that characterizes the maturation of dog sperm cells, and on the tail midpiece of mature spermatozoa. Western blotting further confirmed the presence of a 40-kD immunoreactive protein in the membrane of mature sperm cells. Altogether , these results demonstrate that the main expression site of a subset of the large olfactory receptor gene family is not olfactory mucosa but testis. This expression correlates with the presence of the corresponding protein during sperm cell maturation, and on mature sperm cells. The pattern of expression is consistent with a role as sensor for unidentified chemicals possibly involved in the control of mammalian sperm maturation, migration, and/or fertilizatio

    Modulation of Ciliary Phosphoinositide Content Regulates Trafficking and Sonic Hedgehog Signaling Output

    Get PDF
    SummaryCiliary transport is required for ciliogenesis, signal transduction, and trafficking of receptors to the primary cilium. Mutations in inositol polyphosphate 5-phosphatase E (INPP5E) have been associated with ciliary dysfunction; however, its role in regulating ciliary phosphoinositides is unknown. Here we report that in neural stem cells, phosphatidylinositol 4-phosphate (PI4P) is found in high levels in cilia whereas phosphatidylinositol (4,5)-bisphosphate (PI(4,5)P2) is not detectable. Upon INPP5E inactivation, PI(4,5)P2 accumulates at the ciliary tip whereas PI4P is depleted. This is accompanied by recruitment of the PI(4,5)P2-interacting protein TULP3 to the ciliary membrane, along with Gpr161. This results in an increased production of cAMP and a repression of the Shh transcription gene Gli1. Our results reveal the link between ciliary regulation of phosphoinositides by INPP5E and Shh regulation via ciliary trafficking of TULP3/Gpr161 and also provide mechanistic insight into ciliary alterations found in Joubert and MORM syndromes resulting from INPP5E mutations

    The phosphoinositide 5-phosphatase INPP5K: from gene structure to in vivo functions

    Full text link
    peer reviewedINPP5K (Inositol Polyphosphate 5-Phosphatase K, or SKIP (for Skeletal muscle and Kidney enriched Inositol Phosphatase) is a member of the phosphoinositide 5-phosphatases family. Its protein structure is comprised of a N-terminal catalytic domain which hydrolyses both PtdIns(4,5)P2 and PtdIns(3,4,5)P3, followed by a SKICH domain at the C-terminus which is responsible for protein-protein interactions and subcellular localization of INPP5K. Strikingly, INPP5K is mostly concentrated in the endoplasmic reticulum, although it is also detected at the plasma membrane, in the cytosol and the nucleus. Recently, mutations in INPP5K have been detected in patients with a rare form of autosomal recessive congenital muscular dystrophy with cataract, short stature and intellectual disability. INPP5K functions extend from control of insulin signaling, endoplasmic reticulum stress response and structural integrity, myoblast differentiation, cytoskeleton organization, cell adhesion and migration, renal osmoregulation, to cancer. The goal of this review is thus to summarize and comment recent and less recent data in the literature on INPP5K, in particular on the structure, expression, intracellular localization, interactions and functions of this specific member of the 5-phosphatases family

    The 5-Phosphatase SHIP2 Promotes Neutrophil Chemotaxis and Recruitment

    Get PDF
    Neutrophils, the most abundant circulating leukocytes in humans have key roles in host defense and in the inflammatory response. Agonist-activated phosphoinositide 3-kinases (PI3Ks) are important regulators of many facets of neutrophil biology. PIP3 is subject to dephosphorylation by several 5' phosphatases, including SHIP family phosphatases, which convert the PI3K product and lipid second messenger phosphatidylinositol 3,4,5-trisphosphate (PIP3) into PI(3,4)P2, a lipid second messenger in its own right. In addition to the leukocyte restricted SHIP1, neutrophils express the ubiquitous SHIP2. This study analyzed mice and isolated neutrophils carrying a catalytically inactive SHIP2, identifying an important regulatory function in neutrophil chemotaxis and directionality in vitro and in neutrophil recruitment to sites of sterile inflammation in vivo, in the absence of major defects of any other neutrophil functions analyzed, including, phagocytosis and the formation of reactive oxygen species. Mechanistically, this is explained by a subtle effect on global 3-phosphorylated phosphoinositide species. This work identifies a non-redundant role for the hitherto overlooked SHIP2 in the regulation of neutrophils, and specifically, neutrophil chemotaxis/trafficking. It completes an emerging wider understanding of the complexity of PI3K signaling in the neutrophil, and the roles played by individual kinases and phosphatases within

    INPP5E Preserves Genomic Stability through Regulation of Mitosis

    Get PDF
    The partially understood phosphoinositide signaling cascade regulates multiple aspects of cellular metabolism. Previous studies revealed that INPP5E, the inositol polyphosphate-5-phosphatase that is mutated in the developmental disorders Joubert and MORM syndromes, is essential for the function of the primary cilium and maintenance of phosphoinositide balance in nondividing cells. Here, we report that INPP5E further contributes to cellular homeostasis by regulating cell division. We found that silencing or genetic knockout of INPP5E in human and murine cells impairs the spindle assembly checkpoint, centrosome and spindle function, and maintenance of chromosomal integrity. Consistent with a cell cycle regulatory role, we found that INPP5E expression is cell cycle dependent, peaking at mitotic entry. INPP5E localizes to centrosomes, chromosomes, and kinetochores in early mitosis and shuttles to the midzone spindle at mitotic exit. Our findings identify the previously unknown, essential role of INPP5E in mitosis and prevention of aneuploidy, providing a new perspective on the function of this phosphoinositide phosphatase in health and development

    The inositol Inpp5k 5-phosphatase affects osmoregulation through the vasopressin-aquaporin 2 pathway in the collecting system

    Get PDF
    Inositol Inpp5k (or Pps, SKIP) is a member of the inositol polyphosphate 5-phosphatases family with a poorly characterized function in vivo. In this study, we explored the function of this inositol 5-phosphatase in mice and cells overexpressing the 42-kDa mouse Inpp5k protein. Inpp5k transgenic mice present defects in water metabolism characterized by a reduced plasma osmolality at baseline, a delayed urinary water excretion following a water load, and an increased acute response to vasopressin. These defects are associated with the expression of the Inpp5k transgene in renal collecting ducts and with alterations in the arginine vasopressin/aquaporin-2 signalling pathway in this tubular segment. Analysis in a mouse collecting duct mCCD cell line revealed that Inpp5k overexpression leads to increased expression of the arginine vasopressin receptor type 2 and increased cAMP response to arginine vasopressin, providing a basis for increased aquaporin-2 expression and plasma membrane localization with increased osmotically induced water transport. Altogether, our results indicate that Inpp5k 5-phosphatase is important for the control of the arginine vasopressin/aquaporin-2 signalling pathway and water transport in kidney collecting duct

    Obesity control by SHIP inhibition requires pan-paralog inhibition and an intact eosinophil compartment

    Full text link
    peer reviewedHere we extend the understanding of how chemical inhibition of SHIP paralogs controls obesity. We compare different classes of SHIP inhibitors and find that selective inhibitors of SHIP1 or SHIP2 are unable to prevent weight gain and body fat accumulation during increased caloric intake. Surprisingly, only pan-SHIP1/2 inhibitors (pan-SHIPi) prevent diet-induced obesity. We confirm that pan-SHIPi is essential by showing that dual treatment with SHIP1 and SHIP2 selective inhibitors reduced adiposity during excess caloric intake. Consistent with this, genetic inactivation of both SHIP paralogs in eosinophils or myeloid cells also reduces obesity and adiposity. In fact, pan-SHIPi requires an eosinophil compartment to prevent diet-induced adiposity, demonstrating that pan-SHIPi acts via an immune mechanism. We also find that pan-SHIPi increases ILC2 cell function in aged, obese mice to reduce their obesity. Finally, we show that pan-SHIPi also reduces hyperglycemia, but not via eosinophils, indicating a separate mechanism for glucose control

    The ciliogenic transcription factor Rfx3 is required for the formation of the thalamocortical tract by regulating patterning of prethalamus and ventral telencephalon

    Get PDF
    Primary cilia are complex subcellular structures that play key roles during embryogenesis by controlling the cellular response to several signaling pathways. Defects in the function and/or structure of primary cilia underlie a large number of human syndromes collectively referred to as ciliopathies. Often, ciliopathies are associated with mental retardation (MR) and malformation of the corpus callosum. However, the possibility of defects in other forebrain axon tracts, which could contribute to the cognitive disorders of these patients, has not been explored. Here, we investigate the formation of the corticothalamic/thalamocortical tracts in mice mutant for Rfx3, which regulates the expression of many genes involved in ciliogenesis and cilia function. Using DiI axon tracing and immunohistochemistry experiments, we show that some Rfx3-/- corticothalamic axons abnormally migrate toward the pial surface of the ventral telencephalon (VT). Some thalamocortical axons (TCAs) also fail to leave the diencephalon or abnormally project toward the amygdala. Moreover, the Rfx3-/- VT displays heterotopias containing attractive guidance cues and expressing the guidance molecules Slit1 and Netrin1. Finally, the abnormal projection of TCAs toward the amygdala is also present in mice carrying a mutation in the Inpp5e gene, which is mutated in Joubert Syndrome and which controls cilia signaling and stability. The presence of identical thalamocortical malformations in two independent ciliary mutants indicates a novel role for primary cilia in the formation of the corticothalamic/thalamocortical tracts by establishing the correct cellular environment necessary for its development

    Cent scientifiques répliquent à SEA (Suppression des Expériences sur l’Animal vivant) et dénoncent sa désinformation

    Full text link
    La lutte contre la maltraitance animale est sans conteste une cause moralement juste. Mais elle ne justifie en rien la désinformation à laquelle certaines associations qui s’en réclament ont recours pour remettre en question l’usage de l’expérimentation animale en recherche
    • …
    corecore