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Neutrophils, the most abundant circulating leukocytes in humans have key roles in host
defense and in the inflammatory response. Agonist-activated phosphoinositide 3-kinases
(PI3Ks) are important regulators of many facets of neutrophil biology. PIP3 is subject to
dephosphorylation by several 5’ phosphatases, including SHIP family phosphatases,
which convert the PI3K product and lipid second messenger phosphatidylinositol 3,4,5-
trisphosphate (PIP3) into PI(3,4)P2, a lipid second messenger in its own right. In addition
to the leukocyte restricted SHIP1, neutrophils express the ubiquitous SHIP2. This study
analyzed mice and isolated neutrophils carrying a catalytically inactive SHIP2, identifying
an important regulatory function in neutrophil chemotaxis and directionality in vitro and in
neutrophil recruitment to sites of sterile inflammation in vivo, in the absence of major
defects of any other neutrophil functions analyzed, including, phagocytosis and the
formation of reactive oxygen species. Mechanistically, this is explained by a subtle
effect on global 3-phosphorylated phosphoinositide species. This work identifies a non-
redundant role for the hitherto overlooked SHIP2 in the regulation of neutrophils, and
specifically, neutrophil chemotaxis/trafficking. It completes an emerging wider
understanding of the complexity of PI3K signaling in the neutrophil, and the roles
played by individual kinases and phosphatases within.

Keywords: neutrophil, chemotaxis, recruitment, PI3K, SHIP2, SHIP1, lipid second messenger
INTRODUCTION

Neutrophils are the most abundant circulating leukocytes in humans. These polymorphonuclear
phagocytes provide a first line immune response against infection by invading pathogens and play a
key role in the development of the inflammatory response. Neutrophils express a range of G protein
coupled chemoattractant/chemokine receptors with the help of which they detect, and quickly react
to gradients of chemoattractants, e.g. bacterial peptides. This underpins their ability to leave the
blood stream and move directionally (chemotax) towards sources of chemoattractant. Once
neutrophils reach the sites of inflammation, they deploy a range of effector functions including
org April 2021 | Volume 12 | Article 6717561
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phagocytosis, degranulation, production of reactive oxygen
species (ROS), and the release of neutrophil extracellular traps
(NETs) to eliminate pathogens (1).

Amongst the proximal enzymes activated downstream of the
chemoattractant receptor-ligand interaction is phosphoinositide 3-
kinase (PI3K), which generates the lipid second messenger
phosphat idyl inos i to l (3 ,4 ,5) tr i sphosphate (PIP3) by
phosphorylating the D3 position of the inositol ring of
phosphatidylinositol(4,5)bisphosphate (PI(4,5)P2), an integral
component of the inner leaflet of the plasma membrane (2).
Neutrophils express all four isoforms of agonist-activated PI3K.
PIP3 causes the recruitment to the plasma membrane and
activation of PI3K effectors, many of which are expressed in the
neutrophil (3). The localization of PIP3 at the leading edge is one of
the earliestmolecular events in neutrophil chemotaxis (4, 5), thought
to be important for their ability to polarize and subsequentlymigrate
directionally towards a source of chemoattractant.

PI3K activity is counteracted by phosphatases which
hydrolyze the short-lived PIP3. As a major 3-phosphatase,
phosphatase and tensin homolog (PTEN) converts PIP3 back
to PI(4,5)P2, while the hematopoietic cell-restricted SHIP1 is
thought to be a major 5-phosphatase in leukocytes that
dephosphorylates PIP3 to form PI(3,4)P2, a lipid second
messenger in its own right that shares some effectors with
PIP3 (6). Global PTEN-deficiency is embryonic lethal (7), but
SHIP1-deficient mice are viable and fertile, however, they exhibit
a shortened lifespan that is thought to be due to leukocyte
infiltration of the lungs (8, 9). Both PTEN and SHIP1-deficient
neutrophils were previously described; PTEN knockout
neutrophils are characterized by increased PIP3 (10), enhanced
ROS production when stimulated with fMLF, increased ruffling
and sensitivity to chemoattractants, a minor directionality defect
(11), and a lengthened lifespan (12), while SHIP1 knock-out
neutrophils display reduced ROS production (13) and
augmented apoptosis (14). SHIP1-deficient neutrophil spread
extensively on the substratrum, and in response to
chemoattractant stimulation fail to polarize and chemotax
efficiently towards a chemoattractant (15).

In addition to SHIP1, neutrophils also express its ubiquitous
isozyme, SHIP2, the function of which in the neutrophil remains
uncharacterized. In this study, we describe the analysis of
neutrophils from a mouse (here called Ship2D/D) that carries a
small deletion in the SHIP2 catalytic domain which renders it
catalytically dead (16). We demonstrate that SHIP2 is an
important regulator of neutrophil chemotaxis in vitro and of
neutrophil recruitment to sites of sterile inflammation in vivo,
whereas other neutrophil functions remain essentially intact.
While we do not detect differential PI3K activity when using
PKB phosphorylation as an indirect read-out, PI(3,4)P2 was
found to be reduced.
MATERIALS AND METHODS

Unless otherwise specified, materials were acquired from Sigma
Aldrich (Gillingham, UK). All reagents were of the lowest
available endotoxin level. Tissue culture media and buffers
Frontiers in Immunology | www.frontiersin.org 2
were from Gibco (Thermo Fisher Scientific, Loughborough,
UK). Percoll was from GE Healthcare (Amersham, UK).

Antibodies
Anti-HSP90 (clone 3H3C27), anti-SHIP1 (clone PICI-A5),
FITC-conjugated rat anti-mouse GR1 (clone RB6-8C5), PE-
conjugated rat anti-mouse/human CD11b (clone M1/70), PE/
Cy7-conjugated rat anti mouse/human CD45 (clone 30-F11),
PerCP/Cy5.5-conjugated rat anti F4/80 (clone BM8), APC-
conjugated rat anti-B220 (clone RA3-6B2), PE/Cy7-conjugated
rat anti CD3 (clone 17A2) and pacific blue-conjugated rat anti-
LY6G (clone 1A8) were from BioLegend (London, UK); anti-
PTEN (clone D4.3), anti-PKB (clone 11E7), anti-PKB T308
(clone C25E6) and anti-PKB S473 (clone D9E) were from Cell
Signaling Technology (London, UK). Rabbit IgG (I8140) was
obtained from Sigma. Anti-SHIP2 (AF5389) and PE-conjugated
rat anti-CD64 (clone FAB20741P) were from R&D Systems
(Abingdon, UK) and biotinylated anti-PI(3,4)P2 (z-B034) was
from Echelon Biosciences (Salt Lake City, UT, USA);
streptavidin-AF647, AF488-conjugated phalloidin, AF568-
conjugated phalloidin, and secondary antibodies anti-rat
AF488, anti-rabbit AF568 and anti-rabbit AF488 were obtained
from Thermo Fisher Scientific (Loughborough, UK).

SHIP2 Mouse Model
Ship2D/D mice (16) were housed in individually ventilated cages
in a specific opportunistic pathogen-free small animal barrier
unit at the University of Edinburgh. After backcrossing for eight
generations to C57Bl/6 background, Ship2D/D and wild-type
controls were derived by Ship2D/+ intercrosses. Sex and age-
matched mice were used in experiments. All animal work was
approved by the University of Edinburgh Animals Welfare and
Ethical Review Body and conducted under the control of the
U.K. Home Office (PPL 60/4502 and PFFB 42579).

Neutrophil Preparations
Bone marrow-derived neutrophils were prepared from the tibias
and femurs of age and sex-matched mice on a discontinuous
percoll gradient as previously described (17), using endotoxin-
free reagents throughout. Neutrophil preparations typically
reached ~70% purity as assessed by Diff-Quik-stained
cytocentrifuge preparations. Unless otherwise stated,
experiments were performed in Dulbecco’s PBS supplemented
with Ca2+ and Mg2+, 1g/L glucose and 4mM sodium bicarbonate.

Degranulation
Lactoferrin release was assayed by making use of an antibody
directed to human lactoferrin that had previously been shown to
cross-react with mouse protein as described (18, 19).

Phagocytosis
0.8 mm diameter latex beads were opsonized with polyclonal
rabbit IgG as per manufacturer’s instruction. TNF (1000 U/mL)
and GM-CSF (100 ng/mL)-primed neutrophils (R&D Research,
Abingdon UK) were stimulated with IgG-opsonized latex beads
at a ratio of 5:1 for 20 mins at 37°C. Cells were allowed to adhere
onto coverslips for 1h on ice and then fixed with 2% ice-cold
April 2021 | Volume 12 | Article 671756

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Michael et al. SHIP2 Regulates Neutrophil Chemotaxis
paraformaldehyde (PFA) for 10 minutes. Adherent latex beads
were labelled with anti-rabbit AF568, prior to cell
permeabilization with 0.1% Triton X-100, labelling of all latex
beads with anti-rabbit AF488; cells were mounted with ProLong
Gold (Thermo Fisher Scientific, Loughborough UK). Cells were
viewed using an Evos cell imaging system (Thermo Fisher). The
percentage of cells that had internalized beads, and internalized
beads/cell were recorded.

Analysis of ROS Production
ROS production was detected indirectly by measuring
chemoluminescence production by 5x105 neutrophils/well
using luminescence-grade 96-well plates (Nunc, Thermo Fisher
Scientific Loughborough, UK) in a Cytation plate reader
(BioTek, Swindon, UK) as described (17, 20) with neutrophils
incubated with 150mM luminol and 18.75U/ml horseradish
peroxidase. Data output was in light units/second.

Chemotaxis
Chemotaxis was analyzed with neutrophils resuspended in HBSS
supplemented with 15mM HEPES (pH 7.4) and 0.05% fatty acid
and endotoxin-free BSA. For integrin-dependent chemotaxis,
neutrophil migration on a glass bridge was monitored by time
lapse-imaging for 30 minutes in Dunn chambers (Hawksley,
Lancing, UK). Dunn chambers were assembled as previously
described (21) with 300nM fMLF as the chemoattractant. For
integrin-independent chemotaxis, neutrophils were mixed with a
3D collagen matrix (A1048301, Roche Diagnostics, Mannheim,
Germany), which was prepared as per manufacturer ’s
instructions, and left to polymerize in a humidified incubator
at 37°C at 5% CO2 before cells were allowed to migrate towards
300nM fMLF in Chemotaxis m-slides (Ibidi, Martinsried,
Germany). Images were acquired on a Leica IRB inverted
microscope with temperature-controlled chamber, automated
stage (Prior, Cambridge UK), Orca camera (Hamamatsu,
Welwyn Garden City, UK) and Micromanager image
acquisition software (Fiji). Paths of individual cells were
tracked using the manual tracking plug-in into Image J and
tracks analyzed using the Chemotaxis Tool (Ibidi) plug-in into
Image J as described (19).

Adhesion Under Laminar Flow
Ibidi VI0.4 flow chambers that had been coated with recombinant
murine (rm) ICAM-1 (15mg/mL), rmE-selectin (20mg/mL; both
Biolegend) and rmCXCL1 (15mg/mL; Biotechne, Minneapolis,
MN, USA) were perfused with bone marrow derived neutrophils
at 37°C to deliver a constant sheer stress of 1 dyne/cm2 using a
syringe pump (Legato 200; KD Scientific, Holliston, MA, USA)
(20). Cell adhesion under flow was recorded by time-lapse
imaging (2.5 images/s) for 1 minute at 1, 5, 10 and 15 minutes
after starting flow with a x20 phase contract objective using a
Leica IRB inverted microscope (Leica, Milton Keynes, UK).
Firmly adherent cells were counted using ImageJ.

Reconstitutions
Cohorts of female C57Bl/6 mice were subjected to two doses of
irradiation (4.5Gy) 3 hours apart, and reconstituted the next day
Frontiers in Immunology | www.frontiersin.org 3
by tail vein injection of 4 x 106 T-cell depleted (CD3emicrobead
kit (Militenyi Biotech, Surrey, UK) bone marrow cells from
Ship2D/D mice or wild-type littermates. Following irradiation
mice were offered enrofloxacin (Bayer, Cambridge, UK) in
their drinking water for 4 weeks. Reconstitution of the
hematopoietic system in bone marrow chimeras was confirmed
by analyzing test bleeds by flow cytometry, comparing ratios of B
cells, myeloid cells and neutrophils in chimera to those in wild-
type control bloods. Control and Ship2D/D bone marrow cells
were equally able to reconstitute irradiated recipients
(not shown).

Blood Cell Counts
10-12-week-old control and Ship2D/D littermates were subjected
to cardiac puncture under terminal isofluorane anaesthesia with
confirmation of death by cervical dislocation. Blood was
collected into EDTA-coated vacutainers (Sarstedt, Nümbrecht,
Germany). Erythrocyte counts were obtained from an automated
Alpha VET cell counter (Nihon Kohden, Surrey, UK); leukocyte
markers were labelled and leukocyte numbers obtained by
volumetric counting using an Attune NxT flow cytometer
(Thermo Fisher).

Models of Acute Sterile Inflammation
To induce thioglycollate peritonitis, mice were intraperitoneally
administered 20 ml/kg matured Brewer’s thioglycollate (BD
Biosciences; Wokingham, UK). LPS-induced acute lung
inflammation (ALI) was performed as previously described
(20) by administering 1µg E.coli-derived LPS (serotype O127:
B8, Sigma) in 50µl sterile saline intratracheally. 15 minutes prior
to being sacrificed, mice received 3µg PE/Cy7 labelled anti-CD45
in 100µl sterile saline to label all intravascular leukocytes. Lavage
cells were labelled with FITC-anti-GR1 and APC-anti-CD11b
and analyzed by flow cytometry to calculate total neutrophils
numbers (GR1high, CD11b+).

Immunoblotting for PI3K Activity
Neutrophils in PBS++ were pre-warmed for 5 min at 37°C prior
to being stimulated as indicated with fMLF or vehicle for
indicated times. Cells were lysed in ice-cold 20mM Tris-HCl
pH 7.5, 150mM NaCl, 1mM EDTA, 1mM EGTA, 1% Triton X-
100, 2.5mM Na pyrophosphate, 1mM b-glycero-phosphate,
1mM Na orthovanadate, 0.1mM PMSF and 10µg/ml of each
antipain, aprotinin, pepstatin A and leupeptin for 5 minutes.
Clarified lysates were subjected to SDS-PAGE, and proteins
transferred to Immobilon membrane (Merck Millipore,
Darmstadt, Germany) and subjected to Western blotting with
phosphospecific antibodies directed against PKB as well as a
loading control (HSP 90).

PIP3 Measurements
Neutrophils were prepared for PIP3 detection essentially as
described (22). Neutrophil aliquots (1 x 106 cells in 135 ml)
were stimulated with pre-warmed 865 ml fMLF (final
concentration 10mM) or vehicle. At specified times 5 ml of ice-
cold initial organic mix (CHCL3:MeOH, 1:2 v:v) were added and
sampled stored at -80°C until lipid extractions were performed in
April 2021 | Volume 12 | Article 671756
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the presence of internal standards (d6-C18:0/C20:4-PIP3 (10ng)
and –PI(4,5)P2 (100ng)) to correct for any variation in recovery.
The analysis of inositol lipids was performed as previously
described (22) using a QTRAP 4000 (AB Sciex) mass
spectrometer. Data are shown as response ratios, calculated by
normalizing the MRM targeted lipid integrated response area to
that of a known amount of relevant internal standard.
PIP3 response ratios were normalized to PIP2 response ratio to
account for any cell input variability.

Immunocytochemistry and
Image Acquisition
Neutrophils were allowed to attach onto glass coverslips for 10
minutes prior to being stimulated with fMLP (1 mM final
concentration) or vehicle. At indicated times, cells were fixed
in 2% paraformaldehyde. PI(3,4)P2 immunostaining was
performed essentially as described (23) with 0.5% saponin-
permeabilized neutrophils being labelled with a biotin-
conjugated primary antibody and streptavidin coupled AF647
as detection reagent. Samples were mounted and 8 images were
acquired semi-automatedly using Zen software and a widefield
Zeiss Observer with a 20x objective (Zeiss, Oberkochen,
Germany); Confocal microscopy was performed using a Leica
TCS SP8 microscope with a 60x objective and Lasx image
acquisition software. For comparing signal intensities, all
settings were kept constant between conditions and experiments.

Image Analysis
Automated image analysis pipelines in CellProfiler (24) were
used to determine cell size, brightness and polarization. Briefly,
cells were segmented using nuclei (DAPI) and neutrophil-
specific GR1 signals. In cells that had been thus identified
signal intensity, intensity distribution and cell shape were then
measured. Confocal images were processed with FiJi.

Statistical Analysis
Statistical analysis was performed with Graph Pad Prism 8.
Where data met the assumptions for parametric tests, two-
tailed t-tests, paired t-tests or 2-way ANOVAs with multi-
comparison post-hoc tests were performed; otherwise, the non-
parametric Mann-Whitney test was applied. For kinetic
experiments, the area under the curve was used for analysis.
p values < 0.05 were deemed statistically significant.
RESULTS

Ship2D/D mice carry a 57 amino acid deletion in their catalytic
domain which renders SHIP2 catalytically dead (16). These mice
share their characteristically short faces, small stature and
leanness with a previously described SHIP2-deficient mouse
(16, 25). We prepared bone marrow derived neutrophils from
Ship2D/D mice and matched wild-type controls and compared
expression of the PIP3 phosphatases SHIP1, SHIP2 as well as the
lipid phosphatase PTEN and the protein kinase PKB (also known
as Akt). No differential expression was observed (Figures 1A–E).
Frontiers in Immunology | www.frontiersin.org 4
This contrasts with a prior observation in adipose and muscle
tissue, where SHIP2D/D protein expression was found to be
significantly reduced (16).

Lungs of Ship2D/D Mice Are Not Infiltrated
by Leukocytes
Ship1-/- mice were characterized by a substantial increase in
circulating myeloid cells in the peripheral blood (8, 9). They
developed myeloid cell hyperplasia in the bone marrow and
spleen from an early age and developed sterile inflammatory
macrophage/neutrophil lung infiltration, which consequently
caused >50% to die by only 10 weeks of age (8, 9). In contrast,
blood cell counts were not affected in Ship2D/D mice (Figure 1F).
SHIP2-deficient and Ship2D/D mice survived over 18 months (16,
25). Unchallenged Ship2D/D mice housed in individually
ventilated cages in our specific opportunistic pathogen free
small animal unit did not display any signs of disease or
distress. We used flow cytometry to analyze lung digests from
7-9-month-old mice, noting no obvious immune cell infiltrations
in lungs of Ship2D/D mice, nor splenomegaly (Figure S1), further
supporting the notion that unchallenged Ship2D/D mice are not
prone to developing myeloid cell infiltration into their lungs,
even at an advancing age.

SHIP2 Regulates In Vivo Neutrophil
Recruitment to Sites of Inflammation
To determine whether SHIP2 regulates neutrophil recruitment
to the lungs upon inflicting an inflammatory challenge, we
generated bone marrow chimeras and analyzed neutrophil
recruitment in response to LPS-induced acute lung injury
(ALI). We recovered a significantly decreased number of
Ship2D/D neutrophils compared to wild-type controls from
bronchoalveolar lavages (BAL) of these chimeras (Figure 2A).
In addition to examining BAL fluid, we also determined total
lung neutrophil numbers in single cell digests of PBS-perfused
lungs by flow cytometry. This identified reduced neutrophil
counts in lungs from Ship2D/D>wt as opposed to wt>wt bone
marrow chimeras (Figure 2B). Within the total lung neutrophils,
we distinguished between circulating neutrophils that had firmly
adhered to the vessel wall or partially transmigrated and those
that were truly interstitial by labelling fully or partially
intravascular neutrophils with a fluorescently conjugated anti-
CD45 antibody delivered intravenously immediately prior to
lung perfusion and tissue harvest. We observed fewer interstitial
(anti-CD45-) and increased vascular (anti-CD45+) Ship2D/D than
wild-type control neutrophils (Figures 2C, D).

Neutrophil recruitment can be differentially regulated in a
site- and stimulus-specific manner. For this reason, we also
analyzed neutrophil recruitment in thioglycollate-induced
peritonitis in Ship2D/D>wt and wt>wt bone marrow chimeras,
again observing a substantial recruitment defect of Ship2D/D

neutrophils (Figure 2E).
Together, these experiments identified that Ship2D/D

neutrophil recruitment to sites of sterile inflammation is
impaired, and suggested a reduced ability of Ship2D/D

neutrophils to extravasate.
April 2021 | Volume 12 | Article 671756
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A B

D E

F

C

FIGURE 1 | SHIP1/2 and PTEN expression is not affected in Ship2D/D mice. Neutrophils from wild-type (WT) and Ship2D/D (D/D) mice were tested for SHIP1, SHIP2,
PTEN, PKB and loading control (HSP90, b-actin) expression. (A) Representative examples and (B–E) densitometry of 4 (PTEN, PKB, HSP90) or 5 (SHIP1/2, b-actin)
separate experiments performed. Mean ± SEM are presented; AU, arbitrary units. n.s., not significant. (F) A comparison of blood cell counts between wild-type and
Ship2D/D mice. RBC, red blood cells; WBC, white blood cells; myelo, myeloid cells; neutro, neutrophils. Every symbol represents data obtained from one mouse.
p values were determined by unpaired two-tailed t tests; differences did not reach significance.
Frontiers in Immunology | www.frontiersin.org April 2021 | Volume 12 | Article 6717565

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Michael et al. SHIP2 Regulates Neutrophil Chemotaxis
SHIP2 Regulates Neutrophil Chemotaxis
and Directionality
Given the substantial recruitment defect of Ship2D/D neutrophils
in vivo, we next examined the involvement of SHIP2 catalytic
activity in neutrophil chemotaxis in vitro. We allowed wild-type
control and Ship2D/D neutrophils to migrate through a linear
concentration gradient of fMLF in a 3D collagen matrix. The
tracks of individual neutrophils were plotted in spider plots
(Figure 3A) and parameters of the tracks, including total
accumulated and Euclidian distances travelled, velocity and
directionality were calculated. This identified that Ship2D/D

neutrophils were able to migrate in response to the fMLF
stimulation. The Euclidian (i.e. the straight line between the
start and end point), but not the total distances covered by
Ship2D/D neutrophils were smaller than those of wild-type
controls (Figure 3B), indicating that directionality, but not the
ability to migrate nor the speed of Ship2D/D neutrophils was
reduced (Figures 3C, D). We concluded that SHIP2 regulates
neutrophil chemotaxis.

Migration in a 3D matrix is integrin-independent, whereas
migration on glass is dependent upon integrins (17, 26–28).
Frontiers in Immunology | www.frontiersin.org 6
Since SHIP1 regulates integrin-dependent processes including
chemotaxis (13, 15), we also analyzed neutrophil chemotaxis in
Dunn chambers (29), where neutrophils migrate in a shallow
gradient of chemoattractant on a glass bridge (Figure 3E). Again,
we observed significant chemotaxis defects as indicated by
reduced Euclidian distances covered and reduced directionality
by Ship2D/D neutrophils compared to controls (Figures 3F, H).
Interestingly, with Dunn chamber chemotaxis the total
accumulated distances travelled and the speed of Ship2D/D

neutrophils were also smaller than those of controls (Figures
3F, G), suggesting that there may be an additional, integrin-
dependent component to the chemotaxis defect conferred by
Ship2D/D.

In summary, these experiments highlight that SHIP2 is a
regulator of neutrophil chemotaxis.

SHIP2 Regulates Firm Adhesion Under
Conditions of Flow
To get a better understanding of the extent to which SHIP2 may
be required for integrin-dependent neutrophil functions, we next
analyzed cell adhesion and spreading. We performed adhesion
A B

D E

C

FIGURE 2 | SHIP2 activity is required for neutrophil recruitment to sites of sterile inflammation. (A–D) Neutrophil recruitment in acute lung injury (ALI). ALI was
induced by administering 1mg LPS in 50ml sterile saline intratracheally into 9 wild-type (WT) and Ship2D/D (D/D) bone marrow chimeras (generated with 4 bone
marrow donors per genotype). Neutrophil numbers retrieved from (A) bronchoalveolar lavages and from (B) lung digests are plotted. (C, D) Chimeras were i.v.
administered fluorescently coupled anti-CD45 antibody prior to lavaging of saline-perfused lungs. Single-cell lung digests were then analyzed by flow cytometry.
Percentages of (C) interstitial CD45 label-negative neutrophils and (D) pulmonary intravascular or partially transmigrated CD45 label-positive neutrophils are plotted.
(E) Neutrophil recruitment in thioglycollate peritonitis. Peritonitis was induced by injecting 20ml/kg thioglycollate-containing broth into 8 wild-type and 7 Ship2D/D bone
marrow chimeras; the peritonea were flushed 2.5 hours later. Peritoneal neutrophil numbers are plotted. Experiments were performed on two separate days and
results pooled in the graphs shown. Every symbol represents result obtained from one mouse, with means obtained indicated by bars; p values were determined by
unpaired two-tailed t tests. *p < 0.05; ***p < 0.001.
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assays under static conditions, seeding cells onto glass with or
without fMLF stimulation, and measured the area of the fixed,
adherent neutrophils. While we did not observe any difference in
terms of numbers of cells attached under either condition, the
Frontiers in Immunology | www.frontiersin.org 7
mean area occupied by fMLF-stimulated (but not unstimulated)
attached Ship2D/D neutrophils was smaller than that of controls,
suggesting a subtle defect in fMLF-induced spreading
(Figure 4A).
A

B D

E

F G H

C

FIGURE 3 | SHIP2 activity is required for chemotactic directionality. Bone marrow-derived wild-type (WT) and Ship2D/D (D/D) neutrophils were allowed to chemotax
towards 300nM fMLF either embedded in a collagen-matrix in Ibidi chemotaxis m-slides (A–D) or in Dunn chemotaxis chambers (E–H). The orientation of the
gradient is indicated to the left of spider plots shown in (A) and (E) Cell migration was recorded by time-lapse imaging, with pooled tracks of individual neutrophils
recorded with cells from three separate preparations were plotted as spider plots (A, E) and analyzed (B–D, F–H) using the Ibidi Chemotaxis tool plug-in into Image J.
Accumulated and Euclidean distances (B, F), Velocity (C, G) and Directionality (D, H) are plotted. p values were determined using the Mann-Whitney test.
**p < 0.01; ***p < 0.001; n.s., not significant.
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In vivo neutrophils adhere to the vessel wall in the context of
blood flow rather than in a static situation. We therefore
analyzed neutrophil adhesion of neutrophils to ICAM-1, E-
selectin, and CXCL-1 in parallel plate flow chambers.
Interestingly and contrasting with the observations in the static
adhesion assays, we observed fewer firmly adhering Ship2D/D

compared to wild-type control neutrophils (Figure 4B).
Together these observations suggest that SHIP2 has a subtle
regulatory function in neutrophil adhesion and spreading, which
becomes more apparent under conditions of flow.

For neutrophils to migrate directionally in a gradient of
chemoattractant, they polarize in response to chemoattractant
stimulation. To better understand the reason for the observed
directionality defect, we compared the abilities of Ship2D/D and
wild-type control neutrophils to polarize by analyzing two
morphological parameters, compactness and eccentricity in
response to uniform fMLF stimulation. According to both
parameters, stimulated Ship2D/D neutrophils polarized less
efficiently than wild-type controls (Figures 4D, E).
Frontiers in Immunology | www.frontiersin.org 8
SHIP2 Does Not Regulate ROS
Production, Degranulation
or Phagocytosis
Neutrophils perform a range of effector functions required for
killing of pathogens, which include phagocytosis, ROS
production and degranulation. We asked whether SHIP2
regulates these functions. Our experiments identified no
significant defect in the ability of Ship2D/D neutrophils to
phagocytose IgG-opsonized latex beads in terms of the
percentage of cells that internalized beads, nor the number of
internalized beads (Figures 5A, B).

ROS production and degranulation can be induced by
stimulating a number of receptors, an effect that can be useful
for establishing whether a regulator acts downstream of a
particular receptor. We stimulated neutrophils by plating them
onto a synthetic multivalent pan-integrin ligand, polyArg-Gly-
Lys, which does not depend on co-stimulation of a second
receptor (30), and also with fMLF, but did not detect any
significant differences in ROS produced, nor lactoferrin
A B

DC

FIGURE 4 | SHIP2 regulates adhesion under flow and chemoattractant induced polarization. Bone marrow derived wild-type (WT) and Ship2D/D (D/D) neutrophils
were prepared and (A) plated onto glass coverslips in the presence of absence of 1 mM fMLF for 5 minutes prior to being fixed. The area of GR1-positive cells
obtained from 5 separate neutrophil preparations for a total of 240 cells per condition was measured using CellProfiler software. (B) Neutrophils were perfused at
constant sheer stress through flow chambers coated with ICAM-1, rmE-selectin and rmCXCL1 as detailed in Materials and Methods. The graph shown combined
results obtained from a minimum of three separate experiments. (C, D) Neutrophils from five separate neutrophil preparations were plated onto glass coverslips in
the presence of absence of 1 mM fMLF for 5 minutes prior to being fixed. Compactness (C) and eccentricity (D) of GR1-positive cells were analyzed by CellProfiler to
determine neutrophil polarization according to compactness (C; defined as the mean squared distance of the object’s pixels from the centroid divided by the area,
and where a full circle is attributed a value of 1 and larger values are given to irregular shapes), and eccentricity (D; the ratio of the distance between the foci of the
ellipse and its major axis length, where 0 is a perfect circle, and 1 represents a straight line). p values were determined using the Mann-Whitney test (A, C, D) or an
unpaired, two-tailed t test of the area under the graphs (B). *p < 0.05; **p < 0.01; ***p < 0.001.
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released under any of these conditions (Figures 5C–G). Together
these results suggest that SHIP2 is not required for the ability of
neutrophils to produce ROS or to degranulate in response to
stimulation of integrins nor formylated peptide receptors.

SHIP2D/D Has No Major Effect on Agonist-
Stimulated PKB Phosphorylation or PIP3
Production
Stimulated and unstimulated neutrophil lysates from SHIP1-
deficient mice were characterized by enhanced PKB Thr 308 and
Ser 473 phosphorylation attributed to the increased levels of PI
(3,4,5)P3 accumulation (9). To test if this holds true for Ship2D/D

neutrophils, we carried out Western blots to detect PKB
phosphorylation as an indirect measurement of PI3K activity,
where it is phosphorylated on Thr 308 by PDK1, a direct effector
Frontiers in Immunology | www.frontiersin.org 9
of PI3K and on Ser 473 indirectly via mTORC2 (31–33). We
performed an fMLF stimulation timecourse, observing no
significant differences in PKB phosphorylation of either residue
(Figures 6A–C). Having determined an integrin-dependent
component with functional assays (Figures 3 and 4), we also
analyzed PKB phosphorylation upon plating neutrophils onto an
integrin ligand (fibrinogen) in the presence or absence of co-
stimulation with fMLF, but again observed no significant
difference between genotypes (Figures 6D–F).

Since PKB can associate with PIP3 or PI(3,4)P2 for
phosphorylation (34), analyzing its phosphorylation state may
not inform on an altered ratio between PIP3 and PI(3,4)P2. For a
direct readout, we therefore repeated the stimulation timecourse,
and directly quantified PIP3 in fMLF and mock-stimulated
neutrophils using mass spectrometry (35). This revealed that
A B

D E

F G

C

FIGURE 5 | SHIP2 is dispensable for ROS production, degranulation and phagocytosis. Bone marrow derived wild-type (WT) and Ship2D/D (D/D) neutrophils were
assayed for (A, B) phagocytosis of rabbit IgG-opsonized latex beads. Results obtained in 5 separate experiments are presented as bar graphs. (A) Percentage of
cells that had internalized beads; (B) average number of beads internalized per cell. (C) Degranulation. Cells were stimulated by being plated onto plastic blocked
with heat inactivated (HI) FCS or coated with the pan integrin ligand poly-Arg-Gly-Asp (pRGD), or stimulated with fMLF in the presence of cytochalasin B and
lactoferrin release was measured by ELISA. Means ± SEM obtained from 4 separate experiments are integrated in this experiment. (D–G) ROS production, with
neutrophils stimulated by being plated onto integrin ligands (D, E) or with the soluble stimulus fMLF (F, G). (D, F) Representative experiments and (E, G)
accumulated light emission (mean ± SEM) from 4 separate experiments are shown. Pairwise comparison between wild-type and Ship2D/D neutrophils were not
significant under any of the conditions tested. n.s., not significant.
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PIP3 in fMLF-stimulated Ship2D/D neutrophils was subtly but
significantly increased at one minute after fMLF stimulation
compared to wild-type controls (Figures 6G, H).

Ship2D/D Neutrophils Contain Less PI(3,4)
P2 Than Controls
The functional differences we observed between Ship2D/D and
wild-type control neutrophils could be due to the minor change
in global PI(3,4,5)P3 that we had observed (Figure 6H).
Frontiers in Immunology | www.frontiersin.org 10
Alternatively, it could be due to changes in cellular PI(3,4)P2, a
second messenger in its own right. We performed mass
spectrometry to measure this minor phosphoinositide species
(23), but unfortunately this approach was not sufficiently
sensitive to detect changes in PI(3,4)P2 in response to fMLF
stimulation even with control mouse neutrophils (data not
shown). We therefore resorted to immunofluorescence, making
use of a PI(3,4)P2 antibody to analyze this phosphoinositide in
adherent neutrophils. We noticed that PI(3,4)P2 predominantly
A
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C

FIGURE 6 | SHIP2D/D has no major effect on agonist-stimulated PKB phosphorylation or PIP3 production. Bone marrow-derived wild-type (WT) and Ship2D/D (D/D)
neutrophils were stimulated and (A–F) subjected to analysis of PKB phosphorylation. (A–C) Cells in suspension were stimulated with 1 mM fMLF at 37°C for the
indicated times or (D–F) neutrophils were plated onto 150 mg/mL fibrinogen-coated tissue culture plastic in the presence of absence of 1 mM fMLF at 37°C for 19
minutes and processed for Western blotting. Blots were probed for phospho-PKB Thr 308 and Ser 473 with HSP90 as a loading control. Representative blots are
shown (A, D) and densitometrical analyses combining 5 (B, C) or 4 (E, F) separate experiments are plotted (mean ± SEM). (G, H) Neutrophils were stimulated with
10 mM fMLF for the indicated times at 37°C, and PIP3 generated was analyzed by mass spectrometry. (G) A representative experiment, presenting stearoyl/
arachidonyl (SA) PIP3 divided by SA-PIP2. (H) At the 60 s timepoint, Ship2D/D neutrophils reproducibly contained subtly increased PIP3. (G, H), Symbols represent
individual experiments. Statistical analysis was by 2-way ANOVA with multicomparison post-hoc test (B, C, E, F) and a paired t test (H). *p < 0.05.
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resided on neutrophil endomembranes, consistent with its
function in endocytic processes (36–38). Interestingly, when
analyzing fluorescence intensity of control and Ship2D/D

neutrophils that had or had not been stimulated with fMLF
while being allowed to adhere to glass coverslips, we observed
significantly less PI(3,4)P2 signal in Ship2D/D than in wild-type
neutrophils under both of these conditions (Figures 7A, B).
Hence loss of SHIP2 catalytic activity caused reduced cellular PI
(3,4)P2 of Ship2D/D neutrophils at least in this context which
analyzed adhesion coupled with fMLF stimulation.
DISCUSSION

This study characterized the function of SHIP2 in the neutrophil,
analyzing neutrophils isolated, and bone marrow chimeras
generated from a mouse carrying a homozygous Ship2D/D that
contained a small deletion in the catalytic domain, which
rendered SHIP2 catalytically dead. Unlike with Ship2-
deficiency, analysis of Ship2D/D neutrophils allowed us to
identify neutrophil functions that were dependent on SHIP2
catalytic activity without being confounded by potential scaffold
effects, although the major phenotypes of Ship2-/- and Ship2D/D

mice were very similar (16, 25). It is possible that compensatory
events reduced the severity of the phenotype we observed, and
that use of an inducible, rather than a germ-line Cre to generate
Ship2D/D mice might have resulted in a more severe phenotype.

Despite these considerations, we identified a clear-cut role for
this 5-phosphatase in regulating neutrophil directionality during
chemotaxis in vitro (Figure 3) together with a substantial defect
in neutrophil recruitment to sites of sterile inflammation in vivo
(Figure 2). We further observed a defect in firm adhesion under
flow with neutrophils that were simultaneously stimulated with
immobilized integrin ligand, chemokine and selectin and subtle
Frontiers in Immunology | www.frontiersin.org 11
defects in neutrophil polarization and spreading in response to
uniform chemoattractant stimulation (Figure 4). In contrast, no
significant defects were observed with any other neutrophil
functions tested (phagocytosis, degranulation, ROS production;
Figure 5). Mechanistically, we conclude that the phenotype of
Ship2D/D neutrophils is largely due to reduced cellular PI(3,4)P2
(Figure 7) rather than globally increased PIP3.

A large body of work has implicated PI3Kg and d isoforms in
the regulation of neutrophil chemotaxis/chemokinesis in vitro
and recruitment to inflamed sites in vivo, with some later studies
suggesting a context-dependent function (4, 5, 39–45). While the
3-phosphatase PTEN appears to have a rather subtle regulatory
function in neutrophil chemotaxis (10, 15, 46), neutrophils
deficient in the 5-phosphatase SHIP1 are characterized by
excessive adhesion and spreading, defects in polarization
(when adherent) and chemotaxis in vitro as well as
hyperactivity in ROS production induced by integrin ligation
(13, 15). Our finding of impaired chemotactic directionality
caused by loss of SHIP2 catalytic activity complements this
and suggests important non-redundant regulatory functions of
the two 5-phosphatases in neutrophi l chemotaxis
and recruitment.

Contrasting with SHIP1-deficient neutrophils, which were
characterized by substantially increased PIP3 production (15),
there was only a very subtle increase in PIP3 with Ship2D/D

neutrophils that had been stimulated for 60s with fMLF (Figure
6). Rather we observed substantially reduced intracellular PI(3,4)
P2 in cells that were allowed to adhere to glass in the presence
and absence of fMLF (Figure 7). PI(3,4)P2 at endomembranes
has been attributed to Class II PI3K 2a-dependent
phosphorylation of PI4P in the context of clathrin-dependent
endocytosis (36), but also to 5-dephosphorylation of PIP3 in
clathrin-independent endocytic processes, where SHIP2 has been
implicated (37, 38, 47). Overall our data suggests distinct
A B

FIGURE 7 | Ship2D/D neutrophils contain less PI(3,4)P2 than controls. Bone marrow-derived wild-type (WT) and Ship2D/D (D/D) neutrophils were plated onto glass
coverslips in the presence or absence of 1 mM fMLF for 5 minutes prior to being fixed and subjected to immunostaining with an anti-PI(3,4)P2 antibody. (A) PI(3,4)P2
signal intensity was analyzed automatedly using CellProfiler as detailed in Materials and Methods. The graph presented combines cells from 3 separate experiments
for a minimum of 176 cells per condition and data were analyzed with the Mann-Whitney test. ***p <0.001. (B) Representative examples of PI(3,4)P2-stained
neutrophils for each condition. For ease of viewing, the outline of the cells shown here was traced using FiJi (broken lines). Scale bar, 5 mm.
April 2021 | Volume 12 | Article 671756

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Michael et al. SHIP2 Regulates Neutrophil Chemotaxis
functions of SHIP1 and SHIP2 in the neutrophil which together
control neutrophil chemotaxis and recruitment. Given that
variation in housing conditions and microbiota regulate
neutrophil production and functions (48) and that
discrepancies in experimental conditions can differentially
modulate neutrophil activation status, it is possible that a side-
by-side comparison of both lines may have unearthed additional
features which were missed here.

Still, altogether our work suggests that both SHIP family 5-
phosphatases are important regulators of neutrophil functions.
Hence SHIP2 specifically regulates chemotactic directionality
and neutrophil recruitment to sites of inflammation, while
SHIP1 is a regulator of adhesion-dependent neutrophil
functions. As our understanding of the wider family of 5-
phosphatases grows (49), we will continue to learn how this
group of enzymes regulates different facets of neutrophil biology.
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