26 research outputs found

    Negative Regulation of NKG2D Expression by IL-4 in Memory CD8 T Cells

    Get PDF
    International audienceIL-4 is one of the main cytokines produced during Th2-inducing pathologies. This cytokine has been shown to affect a number of immune processes such as Th differentiation and innate immune responses. However, the impact of IL-4 on CD8 T cell responses remains unclear. In this study, we analyzed the effects of IL-4 on global gene expression profiles of Ag-induced memory CD8 T cells in the mouse. Gene ontology analysis of this signature revealed that IL-4 regulated most importantly genes associated with immune responses. Moreover, this IL-4 signature overlapped with the set of genes preferentially expressed by memory CD8 T cells over naive CD8 T cells. In particular, IL-4 downregulated in vitro and in vivo in a STAT6-dependent manner the memory-specific expression of NKG2D, thereby increasing the activation threshold of memory CD8 T cells. Furthermore, IL-4 impaired activation of memory cells as well as their differentiation into effector cells. This phenomenon could have an important clinical relevance as patients affected by Th2 pathologies such as parasitic infections or atopic dermatitis often suffer from viral-induced complications possibly linked to inefficient CD8 T cell responses

    Clinical metagenomics for the management of hospital- and healthcare-acquired pneumonia

    No full text
    The increasing burden of multidrug-resistant bacteria affects the management of several infections. In order to prescribe adequate antibiotics, clinicians facing severe infections such as hospital-acquired pneumonia (HAP) need to promptly identify the pathogens and know their antibiotic susceptibility profiles (AST), which with conventional microbiology currently requires 24 and 48 h, respectively. Clinical metagenomics, based on whole genome sequencing of clinical samples, could improve the diagnosis of HAP, however, many obstacles remain to be overcome, namely the turn-around time, the quantification of pathogens, the choice of antibiotic resistance determinants (ARDs), the inference of the AST from metagenomic data and the linkage between ARDs and their host. Here, we propose to tackle those issues in a bottom-up, clinically driven approach

    Extracting signature motifs from promoter sets of differentially expressed genes.

    No full text
    International audienceThere is a critical need for new and efficient computational methods aimed at discovering putative transcription factor binding sites (TFBSs) in promoter sequences. Among the existing methods, two families can be distinguished: statistical or stochastic approaches, and combinatorial approaches. Here we focus on a complete approach incorporating a combinatorial exhaustive motif extraction, together with a statistical Twilight Zone Indicator (TZI), in two datasets: a positive set and a negative one, which represents the result of a classical differential expression experiment. Our approach relies on the existence of prior biological information in the form of two sets of promoters of differentially expressed genes. We describe the complete procedure used for extracting either exact or degenerated motifs, ranking these motifs, and finding their known related TFBSs. We exemplify this approach using two different sets of promoters. The first set consists in promoters of genes either repressed or not by the transforming form of the v-erbA oncogene. The second set consists in genes the expression of which varies between self-renewing and differentiating progenitors. The biological meaning of the found TFBSs is discussed and, for one TF, its biological involvement is demonstrated. This study therefore illustrates the power of using relevant biological information, in the form of a set of differentially expressed genes that is a classical outcome in most of transcriptomics studies. This allows to severely reduce the search space and to design an adapted statistical indicator. Taken together, this allows the biologist to concentrate on a small number of putatively interesting TFs

    SQUAT: A web tool to mine human, murine and avian SAGE data.

    No full text
    International audienceBACKGROUND: There is an increasing need in transcriptome research for gene expression data and pattern warehouses. It is of importance to integrate in these warehouses both raw transcriptomic data, as well as some properties encoded in these data, like local patterns. DESCRIPTION: We have developed an application called SQUAT (SAGE Querying and Analysis Tools) which is available at: http://bsmc.insa-lyon.fr/squat/. This database gives access to both raw SAGE data and patterns mined from these data, for three species (human, mouse and chicken). This database allows to make simple queries like "In which biological situations is my favorite gene expressed?" as well as much more complex queries like: . Connections with external web databases enrich biological interpretations, and enable sophisticated queries. To illustrate the power of SQUAT, we show and analyze the results of three different queries, one of which led to a biological hypothesis that was experimentally validated. CONCLUSION: SQUAT is a user-friendly information retrieval platform, which aims at bringing some of the state-of-the-art mining tools to biologists

    SQUAT: A web tool to mine human, murine and avian SAGE data.

    Get PDF
    International audienceBACKGROUND: There is an increasing need in transcriptome research for gene expression data and pattern warehouses. It is of importance to integrate in these warehouses both raw transcriptomic data, as well as some properties encoded in these data, like local patterns. DESCRIPTION: We have developed an application called SQUAT (SAGE Querying and Analysis Tools) which is available at: http://bsmc.insa-lyon.fr/squat/. This database gives access to both raw SAGE data and patterns mined from these data, for three species (human, mouse and chicken). This database allows to make simple queries like "In which biological situations is my favorite gene expressed?" as well as much more complex queries like: . Connections with external web databases enrich biological interpretations, and enable sophisticated queries. To illustrate the power of SQUAT, we show and analyze the results of three different queries, one of which led to a biological hypothesis that was experimentally validated. CONCLUSION: SQUAT is a user-friendly information retrieval platform, which aims at bringing some of the state-of-the-art mining tools to biologists
    corecore