30 research outputs found

    Non-Hamiltonian features of a classical pilot-wave dynamics

    Get PDF
    A bouncing droplet on a vibrated bath can couple to the waves it generates, so that it becomes a propagative walker. Its propulsion at constant velocity means that a balance exists between the permanent input of energy provided by the vibration and the dissipation. Here we seek a simple theoretical description of the resulting non-Hamiltonian dynamics with a walker immersed in a harmonic potential well. We demonstrate that the interaction with the recently emitted waves can be modeled by a Rayleigh-type friction. The Rayleigh oscillator has well defined attractors. The convergence toward them and their stability is investigated through an energetic approach and a linear stability analysis. These theoretical results provide a description of the dynamics in excellent agreement with the experimental data. It is thus a basic framework for further investigations of wave-particle interactions when memory effects are included.Comment: 10 pages, 6 figure

    Self-propulsion and crossing statistics under random initial conditions

    Get PDF
    We investigate the crossing of an energy barrier by a self-propelled particle described by a Rayleigh friction term. We reveal the existence of a sharp transition in the external force field whereby the amplitude dramatically increases. This corresponds to a saddle point transition in the velocity flow phase space, as would be expected for any type of repulsive force field. We use this approach to rationalize the results obtained by Eddi \emph{et al.} [\emph{Phys. Rev. Lett.} \textbf{102}, 240401 (2009)] who studied the interaction between a drop propelled by its accompanying wave field and a submarine obstacle. This wave particle entity can overcome potential barrier, suggesting the existence of a "macroscopic tunneling effect". We show that the effect of self-propulsion is sufficiently strong to generate crossing of the high energy barrier. By assuming a random distribution of initial angles, we define a probability distribution to cross the potential barrier that matches with the data of Eddi \emph{et al.}. This probability is similar to the one encountered in statistical physics for Hamiltonian systems \textit{i.e.} a Boltzmann exponential law.Comment: 7 pages, 4 figure

    Self-organization into quantized eigenstates of a classical wave driven particle

    Get PDF
    A growing number of dynamical situations involve the coupling of particles or singularities with physical waves. In principle these situations are very far from the wave-particle duality at quantum scale where the wave is probabilistic by nature. Yet some dual characteristics were observed in a system where a macroscopic droplet is guided by a pilot-wave it generates. Here we investigate the behaviour of these entities when confined in a two-dimensional harmonic potential well. A discrete set of stable orbits is observed, in the shape of successive generalized Cassinian-like curves (circles, ovals, lemniscates, trefoils...). Along these specific trajectories, the droplet motion is characterized by a double quantization of the orbit spatial extent and of the angular momentum. We show that these trajectories are intertwined with the dynamical build-up of central wave-field modes. These dual self-organized modes form a basis of eigenstates on which more complex motions are naturally decomposed

    Une mémoire ondulatoire : Etats propres, Chaos et Probabilités

    Get PDF
    A droplet bouncing on a vertically vibrated liquid bath can be self-propelled by the surface waves it generates. Theses Faraday waves are sustained by the vertical bath vibration for a memory time which can be tuned experimentally. The wave field thus contains in its interference pattern a memory of the past-trajectory. The resulting entity called a walker is characterized by the interaction between the drop and its surrounding waves through this path-memory.This thesis is devoted to an experimental and theoretical investigation of such a wave-mediated path-memory. For this purpose a bouncing drop is magnetically loaded with a droplet of ferrofluid and can then be trapped in an harmonic well. The drop is thus forced to interact with its own path. The confinement induces a self-organization process between the particle and its wave packet, leading to wave-type behavior for a particle. Notions such quantization or probability of measuring an eigenstate can thus be used for the walker dynamics description. These features originate from the temporal coherence of the walker’s dynamics. In that sense, the walker is an entity extended in time, we cannot reduce to a point-like approximation. It reminds us, in another context, the pilot wave theory developped by de Broglie at the beginning of the XXst century.Une goutte rebondissant sur un bain de liquide en vibration verticale peut se mettre spontanément en mouvement, sous l’action des ondes qu’elle a elle-même générées. Celles ci, appelées ondes de Faraday sont entretenues par la vibration du bain durant un temps de mémoire qui peut être contrôlé expérimentalement. Le champ d’ondes stationnaires généré par la goutte contient ainsi dans ses motifs d’interférence une mémoire de la trajectoire précédemment suivie. L’entité résultante appelée marcheur est caractérisée par cette interaction entre la goutte et les ondes qui l’entourent, via la mémoire de chemin.Cette thèse est consacrée à l’étude expérimentale et théorique de cette mémoire de chemin. Dans ce but, une goutte de liquide encapsulant un volume de ferrofluide est piégée dans un puits de potentiel harmonique d’origine magnétique. La goutte sera ainsi amenée à interagir avec les ondes qu’elle a précédemment générées. Ce confinement induit un processus d’auto-organisation entre la goutte et l’onde sous-jacente qui mène à des comportements de type ondulatoire pour une particule. Les notions de quantifications ou de probabilité de mesure d’un état propre peuvent ainsi être appliquées au cas d’un marcheur. Ces comportements révèlent que le marcheur est un exemple d’objet étendu en temps qui ne peut être réduit à une approximation ponctuelle rappelant, dans un tout autre contexte, la théorie de l’onde pilote développée par de Broglie au début du XXème siècle

    Bubble deformation by a turbulent flow

    Full text link
    We investigate the modes of deformation of an initially spherical bubble immersed in a homogeneous and isotropic turbulent background flow. We perform direct numerical simulations of the two-phase incompressible Navier-Stokes equations, considering a low-density bubble in the high density turbulent flow at various Weber number (the ratio of turbulent and surface tension forces) using the air-water density ratio. We discuss a theoretical framework for the bubble deformation in a turbulent flow using a spherical harmonic decomposition. We propose, for each mode of bubble deformation, a forcing term given by the statistics of velocity and pressure fluctuations, evaluated on a sphere of the same radius. This approach formally relates the bubble deformation and the background turbulent velocity fluctuations, in the limit of small deformations. The growth of the total surface deformation and of each individual mode is computed from the direct numerical simulations using an appropriate Voronoi decomposition of the bubble surface. We show that two successive temporal regimes occur: the first regime corresponds to deformations driven only by inertial forces, with the interface deformation growing linearly in time, in agreement with the model predictions, whereas the second regime results from a balance between inertial forces and surface tension. The transition time between the two regimes is given by the period of the first Rayleigh mode of bubble oscillation. We discuss how our approach can be used to relate the bubble lifetime to the turbulence statistics and eventually show that at high Weber number, bubble lifetime can be deduced from the statistics of turbulent fluctuations at the bubble scale

    Overload wave-memory induces amnesia of a self-propelled particle

    Full text link
    Information storage, for short "memory", is a key element of autonomous, out-of-equilibrium dynamics, in particular in biological entities. In synthetic active matter, however, the implementation of internal memory in agents is often limited or even absent. As a consequence, most of the investigations in the field of active matter had no choice but to ignore the influence of memory on the dynamics of these systems. We take here the opportunity to explore this question by leveraging one of the very few experimental physical system in which memory can be described in terms of a single and most importantly tunable scalar quantity. Here we consider a particle propelled at a fluid interface by self-generated stationary waves. The amount of souvenirs stored in the wave-memory field can be tuned, allowing for a throughout investigation of the properties of this memory-driven dynamics. We show numerically and experimentally that the accumulation of information in the wave field induces the loss of long-range time correlations. The dynamics can then be described by a memory-less process. We rationalize the resulting statistical behavior by defining an effective temperature for the particle dynamics and by evidencing a minimization principle for the wave field

    Build-up of macroscopic eigenstates in a memory-based constrained system

    Get PDF
    International audienceA bouncing drop and its associated accompanying wave forms a walker. Based on previous works, we show in this article that it is possible to formulate a simple theoretical framework for the walker dynamics. It relies on a time scale decomposition corresponding to the effects successively generated when the memory effects increase. While the short time scale effect is simply responsible for the walkerʼs propulsion, the intermediate scale generates spontaneously pivotal structures endowed with angular momentum. At an even larger memory scale, if the walker is spatially confined, the pivots become the building blocks of a self-organization into a global structure. This new theoretical framework is applied in the presence of an external harmonic potential, and reveals the underlying mechanisms leading to the emergence of the macroscopic spatial organization reported by Perrard et al (2014 Nature Commun. 5 3219)

    Experimental study of internal wave generation by convection in water

    Full text link
    We experimentally investigate the dynamics of water cooled from below at 0^oC and heated from above. Taking advantage of the unusual property that water's density maximum is at about 4^oC, this set-up allows us to simulate in the laboratory a turbulent convective layer adjacent to a stably stratified layer, which is representative of atmospheric and stellar conditions. High precision temperature and velocity measurements are described, with a special focus on the convectively excited internal waves propagating in the stratified zone. Most of the convective energy is at low frequency, and corresponding waves are localized to the vicinity of the interface. However, we show that some energy radiates far from the interface, carried by shorter horizontal wavelength, higher frequency waves. Our data suggest that the internal wave field is passively excited by the convective fluctuations, and the wave propagation is correctly described by the dissipative linear wave theory

    Génération d'ondes gravito-inertielles par la turbulence

    No full text
    Dans de nombreuses situations géophysiques et astrophysiques, une couche de fluide turbulent se situe au dessus ou en-dessous d'une zone stratifiée stable. C'est par exemple le cas des zones convective et radiative des étoiles. Alors que cette zone stratifiée a longtemps été assimilée à une zone immobile, il s'avère qu'elle est en fait le siège de mouvements oscillatoires (ondes gravito- inertielles) excités par la turbulence voisine. Ces ondes sont susceptibles de transporter de la quantité de mouvement et de l'énergie, donc d'influer significativement sur la dynamique du système considéré. Il est donc primordial de comprendre leur génération et leurs caractéristiques
    corecore