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Abstract
A bouncing drop and its associated accompanying wave forms a walker. Based
on previous works, we show in this article that it is possible to formulate a
simple theoretical framework for the walker dynamics. It relies on a time scale
decomposition corresponding to the effects successively generated when the
memory effects increase. While the short time scale effect is simply responsible
for the walkerʼs propulsion, the intermediate scale generates spontaneously
pivotal structures endowed with angular momentum. At an even larger memory
scale, if the walker is spatially confined, the pivots become the building blocks
of a self-organization into a global structure. This new theoretical framework is
applied in the presence of an external harmonic potential, and reveals the
underlying mechanisms leading to the emergence of the macroscopic spatial
organization reported by Perrard et al (2014 Nature Commun. 5 3219).

Keywords: memory-based dynamics, Wave self-organization, nonlinear
dynamics
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1. Introduction

Complex systems often require building several hierarching levels of description. This raises
fundamental questions in high-dimensional systems about the relevant amount of information
needed to characterize them [2–4]. Here, we investigate the case of a strongly nonlinear
dynamics in which its apparent complexity can be tremendously reduced, giving way to the
surprising quantification of its observables.

An experimental situation has revealed that a walker [5], this macroscopic association of a
bouncing drop and its accompanying wave, exhibits a dynamics sufficiently complex to
reproduce at an unusual scale, a quantum-like effect such as diffraction through submarines slits
[6], tunnelling [7], Zeeman-like splitting [8], wave-like statistics in cavities [9], or else a Landau
level analogue [10–12]. Perrard et al [1] investigated the case where the system, a droplet set on
a vertically- vibrated bath and self-propelled by its accompanying wave, is subjected to a two-
dimensional (2D) harmonic central potential of natural frequency ω π2 . They singled out
elementary paths on which the full dynamics can be decomposed. In particular, they showed
that the phase space of the dynamics can be projected on a state diagram (n,m). The integer n is
associated with the time-average orbit extension and m the quantized mean angular momentum,
satisfying ∈ − − + … −m n n n n{ , 2, , 2, } reminiscent of the quantum selection rules. In the
current paper, we investigate the mechanism responsible for the emergence of these
macroscopic eigenstates.

As in the previous reported experiments, we consider a millimetric drop of silicon oil
bouncing on a bath oscillating vertically at a frequency =f 800 Hz, with an acceleration
γ γ π= f tcos (2 )m 0 . The coalescence is prevented by the permanent presence of a thin film of air
between the drop and the bath [13–16]. In addition, above a critical Faraday acceleration
threshold γF, the surface is unstable at a frequency f 20 , and standing waves appear
spontaneously as initially observed by Faraday [17] and further studied in [18–20] (see the
review [21] and references therein). We restrain our study to the case with period doubling at an
acceleration amplitude γm slightly below the Faraday acceleration threshold, typically
γ γ γ− ∼( ) 0.98F F m . In this situation, the drop excites parametrically the surface wave, each
impact generating a Bessel-like mode centred at the impact point [22, 23]. The surface height h
derives from the linear superposition of the elementary contributions of the previous impacts.
Each contribution relaxes to the equilibrium over a typical time decay; henceforth the memory
time τ = MTF. This memory parameter M indicates the relevant number of secondary sources
contributing to the surface field. γ γ γ∼ −M ( )F F m is tuned by changing the driving acceleration
amplitude. Impacts that occurred more than a few M Faraday periods in the past are negligible.
Above a critical memory parameter ∼M 3c , the vertical bouncing state is unstable to a
horizontal perturbation . The drop lands on an inclined surface and acquires an increment of
horizontal momentum proportional to the local slope [10, 23, 24], which initiates a horizontal
motion at typical speed ∼ −10 mm s 1.

Figure 1 represents typical examples of the wave field and the associated horizontal walker
dynamics as the memory increases. For short memory parameter M (see figure 1(a)), the surface
field mainly propels the droplet forward at a constant speed. This regime defines the short time
scale τ ∼ TF1 and the eponymous dynamics. For intermediate memory parameter M (see
figure 1(b)), an increasing number of secondary sources can interfere, and semi-local surface
field structures can arise. The walker can turn around these structures and reinforce them. We
unambiguously call these characteristic wave structures, pivotal wave structures. This

2

New J. Phys. 16 (2014) 113027 M Labousse et al



phenomenon acts on a typical time scale τ τ≫2 1 and defines the intermediate time scale
dynamics. As the memory is much larger (see figure 1(c)), several reminiscent pivotal fields can
coexist, and a global coherent structure emerges from an apparently complex path. It
corresponds to a well-defined organization of these pivotal wave structures. This organization
acts on a third time scale τ τ τ≫ ≫3 2 1 and defines the long time scale dynamics. It indicates a
clear separation of time scale, associating with space scale organization of well-defined surface
field structures. At long memory, all these time scales interlock, and the effect of each of them
can be revealed as the memory parameter increases. The main goal of this paper is to present a
theoretical framework in the presence of an attractive potential in the light of this spatio-
temporal separation of scales. As it is surprising that this macroscopic wave particle association,
when immersed into a harmonic potential, gives rise to a set of attractors with a classical
selection rule reminiscent of its quantum counterpart [1], we propose to apply this theoretical
framework to explain how such classical attractors emerge.

In the first part, we recall the symmetry properties of the surface field and their
consequence on its further time-scale decomposition. In the second part, we formulate the short
time dynamics and express it close to the constraint of small speed fluctuations. In the third part,
we zoom out a first time, and we add the semi-local wave structure emerging from the pivotal
field. The dynamics is described in the Frenet-adapted wave basis and shows that this basis is
actually adapted to the translational invariance property of the surface field. We describe how
the system evolves with preferred radii of curvature. These pivotal structures constitute the
basic units of the dynamics. In the last part, we zoom out once again and see how these pivots
interact and organize with each other, which defines the long time dynamics. We show that this
self organization emerges from a compromise between two a priori incompatible symmetries.
The location of the translational-invariant pivotal fields have to account for the rotational-
invariant central force.

Figure 1. Typical example of a walker dynamics in a harmonic potential (here
ω π = Hz( 2 1.32 ) in a natural unit or ω π =( 2 0.0330) in a Faraday period time unit)
and the corresponding wave field as the memory increases. In this specific case the time
average speed is 7.9 mm s−1. The wave fields are reconstructed from the simulated paths
(Fort numerical model [1]). (a) Local structure: memory M = 9, the wave field propels
the drop. (b) Semi local structure: M = 19, some semi local pivotal structures arise. The
drop is propelled and guided by a pivotal surface wave field. (c) Global structure:
M = 150, the drop is now propelled and guided in a fully coherent structure,
corresponding to a well-defined organization of the pivotal surface wave field.
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2. The space-time separation of the field

The theoretical description of the walker dynamics has already been introduced in previous
works [5, 10, 15, 22, 24]. The idea of this paper is to use the time scale separation of the
dynamics to reduce the complexity of the existing theoretical frameworks. As the drop bounces
synchronously with the bath every Faraday period, and the horizontal distance between two
impacts is much smaller than the Faraday wavelength, the horizontal dynamics can be
approximated by a continuous description [24]

⎡
⎣⎢

⎤
⎦⎥γ= − − −



t
C h

E

m

v
v

d
d

[ ] (1)t
p

t

r

r

( )

( )

with r the horizontal drop position and v its horizontal speed as sketched in figure 2(a). The
length scales and time are normalized by λ π2F (λ = 4.75F mm) and the Faraday period TF
(TF = 25ms). Ep denotes an external attractive potential that will be further specified. The
interaction with the surface consists in an apparent friction term -γv and a coupling with the
local slope of the surface field − C h[ ] tr( ) , the gradient being taken at the drop position at a
given time. In principle, the coefficients γ and C can be deduced from the benchmarked Fortʼs
numerical model [1, 6, 10] or from the hydrodynamic model of Moláček et al [15, 23]. They are
used here as free parameters and further chosen to match the experiments. Evaluating this field
at the instantaneous particle position tr( ) yields [10, 24].

∫= ∥ − ∥
−∞

− −h t
T

T
J t T er r r( , )

d
( ( ) ( ) ) (2)

t

F

t T M
0

( )

with J0 the first order Bessel function, being centred at the point of a past impact Tr( ) and felt at
tr( ), the current position of the drop. The origin of different time scales arises intrinsically from

the surface term. It is typically the time interval required to generate different hierarchies of
coherent wave structures. In paragraph 2.1, we first recall symmetry properties of the surface
field h and we use them in paragraph 2.2 to separate the different time scales of the dynamics

Figure 2. (a) Schematics of the dynamics. The origin of referential e e( , )x y corresponds
to the minimum of energy of the attractive potential. The motion defined the tangential
and the normal direction so that T N( , ) forms a direct basis. The standing wave-field at a
given instant t interferes with the remaining standing wave generated in the past (for all
past sources so that <T t). (b) We define two bases: the polar basis θr( , ) of origin
prescribed by the minimum of energy of the attractive potential and the basis ψR( , ) of
origin at the instantaneous centre of curvature. R denotes the algebraic radius of
curvature.
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Figure 3. (a) Simulated circular motion (n,m) = (2, −2) at M = 21 ([1], supplementary
methods) for ω π =2 0.023 (in Faraday period time unit). The position of the drop is
indicated by a blue spot and the whole circular motion by the red circle of radius

λ≃0.9 .F The circles in black dotted lines correspond to the extrema of the Bessel
function of order 0 centred at the origin and plotted in the above sub-figure. The surface
field is reconstructed a posteriori, owing to equation (2), and is similar to the
experimental one. We can separate the surface field into two terms: an intense part,
immediately following and propelling the drop and a coherent part resulting from the
interference of the secondary sources. (b) Simulated lemniscate motion (n,m) = (2,0) at
M = 21 [1] for ω π =2 0.033 (in Faraday period time unit). The black line indicates the
path followed by the drop. The red points denote the loci of the instantaneous centre of
curvature. Rc denotes the centre of the pivotal field and corresponds to the barycentre of
the damped past sources. (c) and (e) Pivotal structure of a lemniscate. (c) In the blue
line, the slice of the wave field; in the black line, a centred Bessel function of order 0 of
negative amplitude. From Rc: the symmetry of the efficiently- contributed path is
roughly rotational-invariant and generates the surface field corresponding to this
symmetry at the leading order. (e) We superpose the reconstructed wave field and the
path (ω π =2 0.033 (in Faraday period time unit)). The black line qualitatively indicates
the part of the path effectively contributing to the wave field (typically a dimensionless
memory curvilinear length λ≃VMTF F). As the drop is turning back to the centre, it
generates a wave field: a Bessel function of order 0 centred in Rc. (d) and (f) The pivotal
structure of a trefoil (n,m) = (4,2). (d) and (f) are similar to (c) and (e) but for a trefoil
(ω π =2 0.016 (in Faraday period time unit)).
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2.1. Symmetry properties of the surface field

The dynamics relies on three difference time scales: the propulsion, the semi-local structure, and
the global organization. Zooming in on these different dynamical aspects requires developing
different tools, particularly in order to describe the surface field.

Being a solution of the two dimensional Helmholtz equation, the local value of the surface
field can be decomposed into a polar Bessel eigenfunction  θ = θ

∈ ∈f r J r{ (˜, ˜)} { (˜)e )}n n n
n

n
i ˜ , with

a free choice in the centre of decomposition. In this sense, the wave field revealed translational-
invariant properties. The surface field can be indifferently decomposed onto a Frenet-adapted
wave basis  = ψ

∈ ∈f t J R t{ ( )} { ( ( ))e }n
F

n n
n t

n
i ( )

⎧
⎨
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The different coordinates are indicated in figure 2(b) and correspond to two different polar
bases. In equation (3), the Frenet basis R denotes the instantaneous radius of curvature, while ψ
indicates the local polar angle having its origin at the instantaneous centre of curvature. In the
central polar basis decomposition (equation (4)), θr( , ) indicates the usual polar coordinates, the
origin coinciding with the centre of the external potential. Let us briefly mention that in both
equations (3) and (4), no imaginary part is effectively added, and the whole expression
remains real.

Equations (3) and (4) are mathematically equivalent and simply correspond to two
different viewpoints. The decomposition in the Frenet basis (equation (3)) corresponds to a
projection of the local value of the wave field into eigenmodes. This decomposition will be used
in section 4 to express the intermediate time scale dynamics. The decomposition onto a central
basis reflects the symmetry of the harmonic potential. We will study in paragraph 5 how the
pivotal wave structure builds a long term self-organization.

2.2. Time scale decomposition of the surface field

Distinguishing the different time scales of the dynamics requires separating two physical effects
taking place at the surface: the propulsion and the construction of an intermediate/long time
coherent surface field structure. To highlight the separation of these two physical effects, the
path and the surface field corresponding to the circular attractor (n,m) = (2,2) are shown in
figure 3(a). It was obtained from path memory simulations (see [1] supplementary materials).
As the memory and the position of each impact are known, the surface field can be numerically
reconstructed from equation (2). Two distinct parts of the field can be distinguished in
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figure 3(a), the first one, intense, directly following the drop and providing the propulsion, and
the second one arising from the constructive interference of the secondary sources left all along
the path. This coherent surface field structure has a dominant term reflecting the signature of the
rotational symmetry of the path, here π λJ R(2 )F0 , as emphasized by sub-figure 3(a). The
propulsion is short-term acting, while the constructive interference requires a much larger
duration to be established. This separation of time scales can be revisited in a theoretical
manner, considering the work of Oza etal [11] and M Miskin [25] for a circular path of radius rc
of angular speed ωc. The coupling with the local slope of the surface field − C hcircle can be
theoretically derived, leading to

⎧

⎨
⎪⎪

⎩
⎪
⎪

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟




ω ω

ω

∂ = − − +

∂ = +

( )h
r

J r
M

h MJ r J r
M

1
1 ( )

1

( )
(a)

( ) ( )
1

(b)

(5)
T

c c
c

N c c

circle
0
2

2

circle
0 1 2

where ∂N and ∂T denote the gradients along the normal and tangential direction to the trajectory.
The tangential gradient of the field (equation (5)(a)) becomes independent of the memory M in
the long memory limits. It indicates that the propulsion is a short time effect (further indexed st)
. On the contrary, the growth of the normal gradient (equation 5(b)) with the memory M
indicates a longer time effect (further indexed lt). The propulsion slightly depends on
the memory at the leading order, as it would be a short-acting effect. On the opposite, it takes
at least a few memory times to establish the constructive interferences leading to
(equation 5(b)). Guided by this idea, it becomes natural to decompose the field for any path
into two parts

= +h H H (6)st lt

and dissociate the propulsive contribution H st from the coherent structure H lt. The short time
effect, being mainly propulsive, admits mainly a tangential component and also imposes

∂ ≃H 0, hypothesis (a) (7)N
st

As a corollary, the propulsion being a short term action, we define the long term evolution of
the field so that it does not contribute anymore to the propulsion, i.e.,

∂ =H 0, hypothesis (b) (8)T
lt

These two hypotheses impose two constraints, which, should have consequences on the
description of the field. The Frenet decomposition of the surface wave (equation (3)) prescribes

 

∑ ∑= + = + ψ

∈ ∈

h t h f t h f t h J R t h J R tr( , ) ( ) ( ) ( ( )) ( ( ))e . (9)
* *

F

n

n
F

n
F F

n

n
F

n
n t

0 0
F

0 0
i ( )

Seeking in equation (9), the terms having a zero tangential derivative (hypothesis (b)) yields
=H h f t( )Flt

0 0
F . Consequently, we identify = ∑ ∈H h f t( )n n

F
n
Fst

* . Note that hypothesis (b) can

be taken as a definition of H lt. H st contains all the tangential derivatives and is the only one
responsible for the propulsion. Section 3 is devoted to this short time scale dynamics and will
express ∂ HT

st on its symmetry in speed. But what about hypothesis (a)? As we remain in the
short memory regime, the tangential component of the gradient ∂ HT

st dominates its normal
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component ∂ HN
st [26]. But is it still valid as we get into a longer memory regime? Section 4

deals with the intermediate time scale dynamics and will investigate how this physical
hypothesis stands as we go onto a more complex trajectory.

3. Short time scale dynamics: the propulsion

The income of energy to the drop mediated by H st increases its horizontal momentum.
Nevertheless, as the friction starts acting, the drop loses a part of energy, and a dynamical
exchange of its energy between the surface field and the drop occurs. This process defines a
steady velocity v0 at which the energy propelling the particle balances its frictional loss
of energy. In the regime parameter of interest, this equilibrium speed is a constant of the motion.
In the phase space of the dynamics, this constraint defines a manifold in the neighbourhood
of which it is convenient to express the dynamics. This constraint on speed contains some
of the major non Hamiltonian features of the dynamics in the short memory regime as
shown in [26]. Experiments and path-memory simulations of the dynamics in a
harmonic potential [1] showed that for a given drop, the mean velocity is a constant of the
motion, and the corresponding fluctuations remain small (typically ∼10%). In the
tangential direction, the combined effect of friction and propulsion from the surface f v( ) can
be expressed as

γ γ= − − ∂ = − + ∂( ) ( )C h v C Hf v v T T. (10)T T
st

Let us mention that only the short term field H st contributes in the tangential direction, as
∂ =H 0T

lt . f v( ) is tangential to the trajectory i.e., = ff v v T( ) ( ) . The amplitude of the
propulsion f v( ) must provide v0 as a fixed point and also is only a function of the amplitude of
the speed i.e., = f vf v T( ) ( ) . Additionally, f(v), must be odd in v as a complete reverse of the
instantaneous of the motion should not break any symmetry in the propulsion, i.e.,

− = −f v f v( ) ( ). It has been shown [26] that at the smallest order of fluctuations, the
propulsion should be written as

Γ= − +( ) ( )f v v v v v v1 ( ) ( ) (11)0
2

0
4

Γ is a dimensionless coupling constant which can eventually depends on the memory.
Equation (11) known as a Rayleigh-type friction [26–28] can be understood from a
dynamical point of view: if v the speed of the particle decreases below v0, the density of
secondary sources left behind the particle increases the efficiency of the surface field
propulsion. On the contrary, if v increases above its set point v0, the density of secondary
sources decreases, and the propulsion loses some of its efficiency. This asymptotic
expansion of the propulsion is similar to the propulsion model of A Boudaoud et al [5] and
can also be derived from the theoretical works of Oza et al [24]. An extension of this
model considering the fluctuations in speed has been recently developed by Bush et al [29]
and shows the importance of these higher order terms in recovering effective mass effects.
With the propulsion being expressed in this simple manner, how does the rest of the surface
field contribute to the emergence of the intermediate time scale dynamics and of the
associated pivotal wave structure?
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4. Intermediate time scale dynamics: a semi local organization

In this part we study, the construction of the semi-local wave structures arising at the
intermediate time scale. We apply this approach to the lemniscate attractor in the case of a (2D)
harmonic potential. First, we propose a qualitative approach. Second, we use the time scale
decomposition of the field decomposition (equation (6)) suggested in section 2.2 to rationalize
the intermediate time scale dynamics.

4.1. A qualitative approach

Figure 3(b) shows the lemniscate attractor (n, m) = (2, 0) in a stable form obtained by path
memory simulations ([1], supplementary methods), similar to the experimental one. We also
indicate (in red points) the location of the instantaneous centre of curvature. As shown in
[1, 30], the elementary lemniscate path exits under other forms, with an azimuthal drift

(typically smaller than ∼ °20 per orbital period) or by intermittency in a chaotic regime. In all
cases, however, and as shown in figure 3(b), when the particle turns back, its speed is minimal,
and its average centre of curvature concentrates in the neighbourhood of the pivotal point, noted
rc. In figure 3(e), we overdraw in the black curve the part of the path contributing effectively to
the pivotal surface structure (typically the M last secondary sources). Then, we plot in the
associated figure 3(c) (in the blue line) a slice of the normalized surface field along the x-axis,
and in the dashed line a Bessel function of order zero centred at the pivotal point rc and of
negative and normalized amplitude. The field generated by this elementary pivotal motion is a
pivotal field and is well fitted by a Bessel function of order 0, centred in rc, which actually
defines rc. Let us note that the emergence of this struture does not require a large number of
secondary sources. The same phenomenon occurs for the trefoil attractor (n, m) = (4, 2), as
indicated in the coupled figures 3(d) and (f).

Locally the turn back generates a surface field ± ∥ − ∥J r R( )c0 : the semi local symmetry of
the surface field is a signature of the semi local circular symmetry of the path. Qualitatively, the
effect of this process is the emergence of a preferred radius of curvature. We now derive
theoretically how such structures arise.

4.2. A theoretical approach

The short time scale provides information in the tangential direction short time, and it has been
shown in paragraph 3 that the propulsion is mediated by the short time field H st. The rest of
field H lt, revealed as the memory increases, is mainly involved in the normal mechanical
balance. We now investigate its role in the emergence of the intermediate time scale dynamics
and in the construction of the pivotal wave structure.

T N( , ) denotes the direct Frenet basis (see figure 2(a)). We note  = r T. and  = r N. ,
evolving in time by definition as  = +v v R˙ and  = − v R˙ . The mechanical tangential
balance yields Γ= − − ∂( )v v v v E m˙ 1 T p

2
0
2 , where ∂ ET p denotes the tangential projection

of the external potential. The normal mechanical balance involves the normal gradient of the
field. As ∂ =H 0N

st , the normal mechanical balances can be simply written as
= −∂ − ∂v R E m C HN p N

2 lt.

The time decomposition of the surface field indicates that H lt predominantly contributes in
the normal direction (hypotheses (b)). It can be expressed as
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∂ ≃ ∂ = ( )H H h t J R t( ( )) (12)N N
Flt
0 1

where h F
0 is the amplitude of the mode n = 0. Note that neglecting ∂ ≫ ∂H HN N

lt st is equivalent
to hypothesis (b). This hypothesis relies on the symmetry of the paths we intend to describe: at
an intermediate time scale dynamics, the trajectory of the walker is made of a succession of
loops. Each loop promotes a dominant local symmetry.

Also, the separation of the time scales in the dynamics enables the modelling of the
dynamics by a set of equations

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

 
 

Γ

= +
= −

= − +

= − − ∂

+ ∂ + =

( )

v R

v R

h h M h J R

v v v v E m

v R E m CJ R h

˙ (1 ) (a)
˙ (b)

˙ ( ) (c)

˙ 1 (d)

( ) 0 (e)

(13)
F F

T p

N p
F

0 0 0 0

2
0
2

2
1 0

Equations (13(a)) and (13(b)) are kinematic and are consequently always valid.
Equation (13(c)) is a differential equation in h F

0 and simply corresponds to a derivation of
its integral form (equation (3)). It means that the mode 0 of the Frenet-adapted wave basis
evolves in time owing to two distinct contributions: it relaxes over a memory time, and the
mode is maintained by the coupling with the drop impacts. Equation 13(c) can be taken as a
definition of h F

0 and thus does have to be checked. Equation 13(d) is the momentum balance in
the tangential direction and is a direct consequence of the expansion of the dynamics in the
neighbourhood of the manifold =v v{ }0 . Equation 13(e) arises from the normal mechanical
balance and differs from the others, as no time-derivative is involved. This implicit equation in
R actually defines the manifold on which the dynamics evolves.

We apply this approach in the case of a (2D) harmonic potential ω=E m r 2p
2 2 of

eigenpulsation ω, which leads to

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

 
 




Γ ω

ω

= +
= −

= − +

= − −

+ + =

( )

v R

v R

h h M h J R

v v v v

v R CJ R h

˙ (1 ) (a)
˙ (b)

˙ ( ) (c)

˙ 1 (d)

( ) 0 (e)

(14)
F F

F

0 0 0 0

2
0
2 2

2 2
1 0

Also, the complexity of the dynamics has been reduced to a five dimensional representation
  v h R( , , , , )F

0 . Can we trust the set of equations 14(d) and (e)? This raises actually two
distinct questions. i) Does equation 14(d) model correctly the propulsion? It is interesting to
remark that equation 14(d) relies only on speed symmetry arguments, which should remain
valid for various memory regimes. The question has already been successfully addressed in the
low memory regime by Labousse and Perrard [26], but up till now remains unproven at larger
memory. It is the first point we have to check. ii) The simplicity of equation 14(e) actually relies
on hypothesis (a) (equation (7)). It is natural to retain only the dominant field symmetry
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corresponding to a single pivotal motion, but we have to evaluate a posteriori the relevance of
such an hypothesis.

The relevance of the set of equation (14) is checked for a lemniscate trajectory in figure 4.
Figures 4(a) and (b) respectively, represent the time evolution of the terms involved in the
normal and tangential directions (respectively equations 14(d) and (e)). The normal balance is
well captured by the equation 14(e) (blue time intervals of figure 4(a)), and the neglected terms
∼∂ HN

st are well negligible. This justifies hypothesis (a) (see equation (7)). As expected, we also
note that the Frenet basis decomposition is not convenient, as the walker moves in a quasi
straight line motion (red time intervals of figure 4(a)). Figure 4(b)) shows that the tangential
balance is also well captured by the equation 14(d). This paragraph also justifies the physical
distinction between a short time field H ,st mainly involved in the propulsion, and a long time
field H ,lt mainly involved in the normal balance. It explains the relevance of the decoupling of
the effects of the two distinct time scales, as it can capture the main features of the dynamics.

Figure 4(c) represents a three dimensional (3D) projection of lemniscate attractor (n,
m) = (2, 0). The constraint on speed enables a large reduction of dimensions of the phase space
in comparison to the integro-differential formulation in [23, 24]. In the integro-differential
formulation, the wave field stores an infinite number of degrees of freedom. Provided the
fluctuations of speed remain small, a large number of these dimensions can be reduced in a
resulting propulsion force (equation (11)) for a large range of memory parameters.

It is useful to study some particular cases of equation (14) to further analyse the
consequences of the speed constraint. A first particularly interesting case is the simplest fixed

point =v v* 0. It induces  =* 0 from 14(d) then  =˙ * 0 from 14(b),  = −R* * from 14(a),

and, finally, =h MJ R( *)F
0

*
0 , which corresponds to a circular attractor. The constraint

⎛
⎝⎜

⎞
⎠⎟ω− + =( ) ( ) ( )v R R CMJ R J R* ( ) * * * 0 (15)0

2
2

1 0

is multi-valued, as several R* can satisfy this equation in the high memory limit. The term

δ ω= −v R( *) ( *)0
2 2 corresponds to a mismatch of frequency between the one arising from the

external harmonic potential ω and the natural frequency v R prescribed by the surface field.
They are not necessarily equal, which is a signature of the difference of symmetry between the
surface field force and the external force: this set of equations could provide a simplified
theoretical framework to study the transitions to the low-dimensional chaotic regimes reported

by Perrard et al [30]. We recover the condition =J R J R( *) ( *) 00 1 in the long memory limit,
which gives rise to a quantization of the radius of curvature [1, 10–12, 25, 31].

Another interesting limit case arises when there exists a strong mismatch between the
centre of curvature and the origin of the external force  ≪R 1. Equation 14(d) shows that
any spread of difference of speed from its set point induces a retroaction from the term

−v v v(1 )2
0
2 . Nevertheless, the coupling to the external potential may induce a non-stationary

solution in speed. Indeed, provided  ≪R 1, time-derivating equation 14(d) leads to
Γ ω+ − + =v v v v v¨ ˙ (1 3 ) 02

0
2 2 and provides a self oscillation of speed (Van der Pol type).

These fluctuations of speed would make a straight line motion unstable to any transverse
fluctuations. This instability of the straight line motion is observed in harmonic potential [1, 26]
in the reported parameter regimes.
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This paragraph focused on the intermediate time scale dynamics. We adopted a point of
view adapted to the symmetry of the wave field by choosing to develop the surface field into a
Frenet-adapted wave basis. It enables us to separate a short time effect, the propulsion, and an
intermediate time effect, the tendency of the dynamics to build a pivotal field, and the
emergence of preferred radii of curvature. What will happen to these pivotal structures at the
long time scale dynamics?

Figure 4. Verification of equation (14) for a lemniscate extracted from the Fort
numerical model (ω π =2 0.033 (in Faraday period time unit), M = 21). The time and
length scales are expressed in natural units. (a) Normal balance from simulation results:
in the black line π λ−CJ R h(2 )F

F
1 0 with C = 1.40 m s−2 (C = 0.18 in dimensionless

units), in the red line ω+v R2 2 . The blue time intervals (A,C) indicate a good
theoretical prediction of equation 14(e) and correspond to the build up of a pivotal field.
The red time intervals (B,D) correspond to the parts of the path that do not adequately fit
with 14(e). The insert is the simulated path (see figure 3(b)) and links the time intervals
(A,B,C,D) to their corresponding portion of the path. (b) Tangential balance from
simulation results: in the black line ω+v̇ 2 , in the red line Γ −v v v(1 )2

0
2 with

Γ = 35.0 s−1 (Γ = 0.875 in dimensionless units), and = < > ≃ =v v 7.90
2 mm s−1 (or

= × −v 4.2 100
2 in dimensionless units). Fluctuations of speed are of 17%. (c)

Projection of the in the dimensionless representation  λ λ λR( , , )F F F .
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5. Long time scale dynamics: the global organization of the pivots

We zoom out once again in the scales of time and observe the dynamics at a longer time scale.
The memory is thus long enough to store several pivotal structures in the wave field. These
pivotal structures should interact via the walkerʼs trajectory. One would also expect to feel the
effect of the central force and of its relating symmetry. With the exception of the circular
attractor, how can the construction of the pivotal field be compatible with the axisymmetry of
the (2D) central harmonic potential?

Perrard et al show that the lemniscates and the trefoil attractors have quantized extensions.
Consequently, the location of these pivotal points should be well defined, meaning that they

Figure 5. (a) Sketch of the interaction between two pivotal fields. The pivotal points
(two red dots) are diametrically opposed on a circle of radius d2. The black dot indicates
the centre of the harmonic potential. (b) Superposition of two pivotal fields
 = − ∥ − ∥ + ∥ − ∥J Jr R r R( ( ) ( ))c c2 0

(1, 2)
0

(2, 2) and the associated path with
= ∥ ∥ = ∥ ∥d R Rc c2

(1, 2) (2, 2) . Here is chosen a field with =d d2 2
*. The lemniscate path

is identical to figure 3(e). (c) Sketch of the interaction between three pivotal fields. The
pivotal points (three blue dots) are π2 3 equally spaced on a circle of radius d3. The
black dot indicates the centre of the harmonic potential. (d) Superposition of three
pivotal fields  = ∥ − ∥ + ∥ − ∥ + ∥ − ∥J J Jr R r R r R( ) ( ) ( )c c c3 0

(1, 3)
0

(2, 3)
0

(3, 3) and the
associated path, with = ∥ ∥ = ∥ ∥ = ∥ ∥d R R Rc c c3

(1, 3) (2, 3) (3, 3) . Here, is chosen a field
with =d d3 3

*. The trefoil path is identical to figure 3(f). (e) Evolution of I d( )2 2 (red line)
and I d( )3 3 (blue line) with d. Here, d is common notation for d2 or d3.
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adopt a particular position in space. We propose a simple geometrical approach to justify this
quantization. Each about-turn generates a Bessel function centred at its associated pivotal wave
structure ∥ − ∥J r R( )c

k n
0

( , ) . n indicates the number of the pivotal point: n = 2 for the lemniscate
and n = 3 for the trefoil; k = 1,…, n denote the kth pivotal points. We sketched in figure 5(a), the
position of the pivotal points =R( )c

i
i

,2
1,2 of a lemniscate. They are diametrically opposed on a

circle of radius d2. We superpose on figure 5(b) a numerical lemniscate path to a field made of
the superposition of two pivotal fields, each of them centred on a pivotal point =R( )c

i
i

,2
1,2.

Figures 5(c) and (d) are similar to figures 5(a) and (b), except for a trefoil, with three pivotal
points =R( )c

i
i

,3
1,2,3 that are π2 3 equally spaced.

Figure 5(b) indicates the contour line of the superposition of two pivotal fields
 = − ∥ − ∥ + ∥ − ∥J Jr R r R( ( ) ( )),c c2 0

(1, 2)
0

(2, 2) and figure 5(d) shows the superposition of
three pivotal fields  = ∥ − ∥ + ∥ − ∥ + ∥ − ∥J J Jr R r R r R( ) ( ) ( )c c c3 0

(1, 3)
0

(2, 3)
0

(3, 3) . To
estimate the spatial coherence between the successive pivotal fields, we compute the interfering
quantity related to the superposition of n pivotal fields.

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∫ ∫ ∫ ∫ ∑= = ∥ − ∥

=
( )( )I d

A
S

A
J Sr R

1
d

1
d . (16)n n

n
n

n k

n

c
k n2

1

0
( , )

2

where = ∥ ∥d Rn c
k n( , ) is the distance between the kth pivotal point and the centre of symmetry of

the trajectories. The integration is realized numerically in a large λ λ×(20 20 )F F but finite
centred surface domain. It is normalized by An, a quantity independent of d which makes In
independent on the domain of integration.

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∫ ∫ ∑= ∥ ∥

=

A
n

J Sr
1

( ) d . (17)n

k

n

1

0

2

figure 5(e) shows the evolution of In with dn and presents optima of interfering conditions for
quantized distances =d dn n

*. In particular, it predicts λ=d 1.08 F2
* for the lemniscate and

λ=d 1.80 F3
* for the trefoil, respectively. It is in good agreement with the pivotal points of the

lemniscate in figure 3(e) ( λ1.015 F), and of the trefoil in figure 3(f) ( λ1.79 F). The well-defined
position of the pivotal points are a signature of the symmetry of the external potential. It
suggests reconstructing the equation of motion in a basis adapted to the harmonic central

potential. It would imply that  d( *)n corresponds to a local maximum of overlapping with the
central wave basis  = θ

∈ ∈f t J r t{ ( )} { ( ( )e )}n n n
n t

n
ext i ( ) . Figure 5(f) presents other maxima, but

they are not observed experimentally. For low distance dn, these states are in competition with
the circular attractors. This geometrical approach only demonstrates how the pivotal fields are
organized between each other but did not account for the dynamical stability.

6. Conclusion

We investigated the walker dynamics subjected to an attractive potential. The main goal of the
current paper was to show that the dynamics lies on three time scales, unveiled as the memory
parameter increases. At a short time scale, the accompanying surface wave simply propels the
drop. At an intermediate time scale, the appearance of a coherent wave structure that we call the
pivotal field induces motion with preferred radii of curvature. This elementary wave pattern
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give rise to a well-defined motion and can be seen as an elementary block of motion. The long
time scale dynamics assembles these elementary pivotal fields to maximize their mutual
interferences. The external potential imposes its own symmetry, which a given disposition of
the pivotal fields has to account for.

We applied our theoretical framework to a particular case of the (2D) harmonic potential.
We explained how these three time scales and relating spatial self-organizations are interlocked.
The mechanism provides a new rule of construction for the macroscopic eigenstates reported
in [1].

The research of coherent structures is a common technique in complex systems, such as
fully developed turbulent flows. In this case, the details of the dynamics do not really matter,
and much of the information is stored in a much simpler structure that leads to a hierarchy in the
description of the complexity. In the current article, the details of the reported dynamics are
forgotten, as they contribute to the emergence of higher order structures. One can reason from a
‘dynamics’ point of view but will be rapidly limited as the complexity of description increases
tremendously. One can also sacrifice some details of the dynamics and adopt a description at
another time scale. In this limit, the problem is reduced to a self-organization of the elementary
wave patterns. The useful amount of information (said differently, the apparent dimensions of
the system), depends here on the time scale of the description. In the current object of study, it
explains why the dynamics, apparently complex and chaotic, can be reduced to its attractors,
which can be simply defined by two integers and called eigenstates.
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