65 research outputs found

    Phenolic profiling of Piper species by Liquid Chromatography-Mass Spectrometry

    Get PDF
    In the present study, phenolic compounds from four Piper species viz., P. nigrum (Black pepper), P. longum, P. chaba and P. colubrinum were identified by LC-MS analysis. The identified phenolic compounds mainly include phenolic acids and flavonoids. Thirteen compounds were identified in black pepper which mainly included hydroxybenzoic acids (syringic acid, protocatechuic acid etc.), hydroxycinnamic acids (caffeic acid, ferulic acid and 4-coumaric acid) and flavonoids (luteolin-8-C-glucoside and apigenin). Among the six compounds identified in P. longum, three belonged to hydroxybenzoic acid and the other three belonged to hydroxycinnamic acid category. Seven compounds were identified from P. chaba which comprised of hydroxybenzoic acids, phenolic aldehydes and hydroxycinnamic acids. In P. colubrinum, ten compounds were identified and majority were flavonoids like kaempferol-5-glucoside and apigenin-7-galactoside. Hydroxybenzoic acids like protocatechuic acid and phenolic aldehyde like vanillin were also identified in P. colubrinum. Salicylic acid, a monohydroxybenzoic acid was identified in all the four species. &nbsp

    Identification of preexisting adaptive immunity to Cas9 proteins in humans

    Get PDF
    The CRISPR-Cas9 system is a powerful tool for genome editing, which allows the precise modification of specific DNA sequences. Many efforts are underway to use the CRISPR-Cas9 system to therapeutically correct human genetic diseases1-6. The most widely used orthologs of Cas9 are derived from Staphylococcus aureus and Streptococcus pyogenes5,7. Given that these two bacterial species infect the human population at high frequencies8,9, we hypothesized that humans may harbor preexisting adaptive immune responses to the Cas9 orthologs derived from these bacterial species, SaCas9 (S. aureus) and SpCas9 (S. pyogenes). By probing human serum for the presence of anti-Cas9 antibodies using an enzyme-linked immunosorbent assay, we detected antibodies against both SaCas9 and SpCas9 in 78% and 58% of donors, respectively. We also found anti-SaCas9 T cells in 78% and anti-SpCas9 T cells in 67% of donors, which demonstrates a high prevalence of antigen-specific T cells against both orthologs. We confirmed that these T cells were Cas9-specific by demonstrating a Cas9-specific cytokine response following isolation, expansion, and antigen restimulation. Together, these data demonstrate that there are preexisting humoral and cell-mediated adaptive immune responses to Cas9 in humans, a finding that should be taken into account as the CRISPR-Cas9 system moves toward clinical trials

    Development of β-globin gene correction in human hematopoietic stem cells as a potential durable treatment for sickle cell disease

    Get PDF
    Sickle cell disease (SCD) is the most common serious monogenic disease with 300,000 births annually worldwide. SCD is an autosomal recessive disease resulting from a single point mutation in codon six of the β-globin gene (HBB). Ex vivo β-globin gene correction in autologous patient-derived hematopoietic stem and progenitor cells (HSPCs) may potentially provide a curative treatment for SCD. We previously developed a CRISPR-Cas9 gene targeting strategy that uses high-fidelity Cas9 precomplexed with chemically modified guide RNAs to induce recombinant adeno-associated virus serotype 6 (rAAV6)-mediated HBB gene correction of the SCD-causing mutation in HSPCs. Here, we demonstrate the preclinical feasibility, efficacy, and toxicology of HBB gene correction in plerixafor-mobilized CD34+ cells from healthy and SCD patient donors (gcHBB-SCD). We achieved up to 60% HBB allelic correction in clinical-scale gcHBB-SCD manufacturing. After transplant into immunodeficient NSG mice, 20% gene correction was achieved with multilineage engraftment. The long-term safety, tumorigenicity, and toxicology study demonstrated no evidence of abnormal hematopoiesis, genotoxicity, or tumorigenicity from the engrafted gcHBB-SCD drug product. Together, these preclinical data support the safety, efficacy, and reproducibility of this gene correction strategy for initiation of a phase 1/2 clinical trial in patients with SCD

    Study protocol title: a prospective cohort study of low back pain

    Get PDF
    BACKGROUND: Few prospective cohort studies of workplace low back pain (LBP) with quantified job physical exposure have been performed. There are few prospective epidemiological studies for LBP occupational risk factors and reported data generally have few adjustments for many personal and psychosocial factors. METHODS/DESIGN: A multi-center prospective cohort study has been incepted to quantify risk factors for LBP and potentially develop improved methods for designing and analyzing jobs. Due to the subjectivity of LBP, six measures of LBP are captured: 1) any LBP, 2) LBP ≥ 5/10 pain rating, 3) LBP with medication use, 4) LBP with healthcare provider visits, 5) LBP necessitating modified work duties and 6) LBP with lost work time. Workers have thus far been enrolled from 30 different employment settings in 4 diverse US states and performed widely varying work. At baseline, workers undergo laptop-administered questionnaires, structured interviews, and two standardized physical examinations to ascertain demographics, medical history, psychosocial factors, hobbies and physical activities, and current musculoskeletal disorders. All workers’ jobs are individually measured for physical factors and are videotaped. Workers are followed monthly for the development of low back pain. Changes in jobs necessitate re-measure and re-videotaping of job physical factors. The lifetime cumulative incidence of low back pain will also include those with a past history of low back pain. Incident cases will exclude prevalent cases at baseline. Statistical methods planned include survival analyses and logistic regression. DISCUSSION: Data analysis of a prospective cohort study of low back pain is underway and has successfully enrolled over 800 workers to date

    Ammonia-Nitrogen Recovery from Synthetic Solution using Agricultural Waste Fibers

    Get PDF
    In this study, modification of Empty Fruit Bunch (EFB) fibers as a means to recover ammonianitrogen from a synthetic solution was investigated. Methods: The EFB fiber was modified using sodium hydroxide.Adsorption-desorption studies of ammonia nitrogen into the modified EFB fiber were investigated Findings: Theincrease in adsorption capacity was found to be proportional with the increase of pH up to 7, temperature and ammoniaconcentration. The maximum adsorption capacity is 0.53-10.89 mg/g. The attachment of ammonia nitrogen involves ionexchange-chemisorption. The maximum desorption capacity of 0.0999 mg/g. Applications: This study can be used as abaseline for designing a low cost adsorbent system for ammonia nitrogen recovery drainage and industrial wastewater aswell as EFBs-palm oil mill effluent composting

    The Absence of MIST1 Leads to Increased Ethanol Sensitivity and Decreased Activity of the Unfolded Protein Response in Mouse Pancreatic Acinar Cells

    Get PDF
    Background: Alcohol abuse is a leading cause of pancreatitis in humans. However, rodent models suggest that alcohol only sensitizes the pancreas to subsequent insult, indicating that additional factors play a role in alcohol-induced pancreatic injury. The goal of this study was to determine if an absence of MIST1, a transcription factor required for complete differentiation of pancreatic acinar cells in mice, increased the sensitivity to alcohol. Methods: Two to four month-old mice lacking MIST1 (Mist1 2/2) or congenic C57 Bl6 mice were placed on a Lieber-DeCarli diet (36 % of total kcal from ethanol and fat), a control liquid diet (36 % kcal from fat) or a regular breeding chow diet (22% kcal from fat). After six weeks, pancreatic morphology was assessed. Biochemical and immunofluorescent analysis was used to assess mediators of the unfolded protein response (UPR). Results: Ethanol-fed Mist1 2/2 mice developed periductal accumulations of inflammatory cells that did not appear in wild type or control-fed Mist1 2/2 mice. Wild type mice fed diets high in ethanol or fat showed enhancement of the UPR based on increased accumulation of peIF2a and spliced XBP1. These increases were not observed in Mist1 2/2 pancreatic tissue, which had elevated levels of UPR activity prior to diet exposure. Indeed, exposure to ethanol resulted in a reduction of UPR activity in Mist1 2/2 mice. Conclusions: Our findings suggest that an absence of MIST1 increases the sensitivity to ethanol that correlated wit

    Pathogenic SPTBN1 variants cause an autosomal dominant neurodevelopmental syndrome

    Get PDF
    SPTBN1 mutations cause a neurodevelopmental syndrome characterized by intellectual disability, language and motor delays, autism, seizures and other features. The variants disrupt beta II-spectrin function and disturb cytoskeletal organization and dynamics. SPTBN1 encodes beta II-spectrin, the ubiquitously expressed beta-spectrin that forms micrometer-scale networks associated with plasma membranes. Mice deficient in neuronal beta II-spectrin have defects in cortical organization, developmental delay and behavioral deficiencies. These phenotypes, while less severe, are observed in haploinsufficient animals, suggesting that individuals carrying heterozygous SPTBN1 variants may also show measurable compromise of neural development and function. Here we identify heterozygous SPTBN1 variants in 29 individuals with developmental, language and motor delays;mild to severe intellectual disability;autistic features;seizures;behavioral and movement abnormalities;hypotonia;and variable dysmorphic facial features. We show that these SPTBN1 variants lead to effects that affect beta II-spectrin stability, disrupt binding to key molecular partners, and disturb cytoskeleton organization and dynamics. Our studies define SPTBN1 variants as the genetic basis of a neurodevelopmental syndrome, expand the set of spectrinopathies affecting the brain and underscore the critical role of beta II-spectrin in the central nervous system

    PPARδ Activation Acts Cooperatively with 3-Phosphoinositide-Dependent Protein Kinase-1 to Enhance Mammary Tumorigenesis

    Get PDF
    Peroxisome proliferator-activated receptorδ (PPARδ) is a transcription factor that is associated with metabolic gene regulation and inflammation. It has been implicated in tumor promotion and in the regulation of 3-phosphoinositide-dependent kinase-1 (PDK1). PDK1 is a key regulator of the AGC protein kinase family, which includes the proto-oncogene AKT/PKB implicated in several malignancies, including breast cancer. To assess the role of PDK1 in mammary tumorigenesis and its interaction with PPARδ, transgenic mice were generated in which PDK1 was expressed in mammary epithelium under the control of the MMTV enhancer/promoter region. Transgene expression increased pT308AKT and pS9GSK3β, but did not alter phosphorylation of mTOR, 4EBP1, ribosomal protein S6 and PKCα. The transgenic mammary gland also expressed higher levels of PPARδ and a gene expression profile resembling wild-type mice maintained on a diet containing the PPARδ agonist, GW501516. Both wild-type and transgenic mice treated with GW501516 exhibited accelerated rates of tumor formation that were more pronounced in transgenic animals. GW501516 treatment was accompanied by a distinct metabolic gene expression and metabolomic signature that was not present in untreated animals. GW501516-treated transgenic mice expressed higher levels of fatty acid and phospholipid metabolites than treated wild-type mice, suggesting the involvement of PDK1 in enhancing PPARδ-driven energy metabolism. These results reveal that PPARδ activation elicits a distinct metabolic and metabolomic profile in tumors that is in part related to PDK1 and AKT signaling

    Cellular interactions of functionalized superparamagnetic iron oxide nanoparticles on oligodendrocytes without detrimental side effects: Cell death induction, oxidative stress and inflammation

    No full text
    International audienceIron oxide nanoparticles have the capability to cross Blood Brain Barrier (BBB) and hence are widely investigated for biomedical operations in the central nervous system. Before being used in humans, it is necessary to investigate their biocompatibility, dosimetry and biological interaction. In the present study, in-house synthesized superparamagnetic iron oxide nanoparticles (SPIONs) were functionalized using the polymer, PolyEthylene Glycol and a fluorophore (Rhodamine) (fSPIONs). The interaction of fSPIONs with murine oligodendrocytes 158N revealed that the nanoparticles were taken up by the cells via endocytosis, and there was a dose-dependent increase in the intracellular iron content as revealed by flow cytometry, transmission electron microscopy and confocal microscopy. Nanoparticles remained stable inside the cells even after 24 h. In addition, interaction and/or accumulation of nanoparticles was supported by the possibility to isolate treated cells even after 24 h. Cell sorting capacity using a magnet depended on the amount of particles. Noteworthy, whereas these nanoparticles can interact per cell. fSPIONs exhibited good biocompatibility as no toxicological response, including morphological changes, loss of viability, oxidative stress or inflammatory response (IL-1β, IL-6 secretion) was observed. These data show that the in-house synthesized fSPIONs have no accumulate on 158N oligodendrocytes without the side effects on 158N cells, and constitute interesting tools for biomedical applications on nerve cells, including cellular imaging and targeting (oxidative stress, inflammation and cell death) that could be detrimental when a subsequent use of these nanoparticles in humans is considered
    corecore