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Abstract
Lianas are a key growth form in tropical forests. Their lack of self-supporting tissues 
and their vertical position on top of the canopy make them strong competitors of 
resources. A few pioneer studies have shown that liana optical traits differ on aver-
age from those of colocated trees. Those trait discrepancies were hypothesized to be 
responsible for the competitive advantage of lianas over trees. Yet, in the absence of 
reliable modelling tools, it is impossible to unravel their impact on the forest energy 
balance, light competition, and on the liana success in Neotropical forests. To bridge 
this gap, we performed a meta-analysis of the literature to gather all published liana 
leaf optical spectra, as well as all canopy spectra measured over different levels of 
liana infestation. We then used a Bayesian data assimilation framework applied to two 
radiative transfer models (RTMs) covering the leaf and canopy scales to derive tropi-
cal tree and liana trait distributions, which finally informed a full dynamic vegetation 
model. According to the RTMs inversion, lianas grew thinner, more horizontal leaves 
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1  |  INTRODUC TION

Terrestrial ecosystems are a key component of the Earth's carbon 
cycle as they are responsible for a yearly uptake of about 60 GtC 
(Beer et al., 2010) and store about 860 GtC worldwide (Pan et al., 
2011), about 50% of which is located in the tropics (Avitabile et al., 
2016; Brinck et al., 2017). Forests in general, and tropical ecosys-
tems in particular, also profoundly regulate the global energy bud-
get by mediating the exchange of energy and moisture between 
the land and the atmosphere (Fischlin et al., 2007; Piao et al., 2020; 
Spracklen et al., 2018). Through succession, land use, management, 
and vegetation dynamics, the ratio of back-reflected solar radia-
tion to the total received (i.e. albedo) may radically change (Bonan, 
2008).

Forest albedo is controlled by the optical properties and geo-
metric arrangement of leaf and wood tissues, and, in open canopies, 
also by the contribution of soil reflectivity. Altogether, these forest 
features determine what fraction of incident light penetrates in the 
canopy, to what depth, where light is absorbed, and how much is re-
flected back to the atmosphere (Asner, 2008). Light interception and 
light availability within the canopy not only regulate photosynthe-
sis but also influence long-term processes like seedling recruitment, 
and hence forest species composition through competition (Bonan, 
2019). In other words, radiative transfer is a key process for all plants 
in the ecosystem (Yuan et al., 2016) and its accurate representation 
in vegetation models is critical to represent ecosystem functioning 
(Fisher et al., 2018).

While radiative transfer in canopies has been studied for de-
cades (Jacquemoud et al., 2000), as of today there has been little 
focus on its contribution to uncertainty in dynamic global vegetation 
models (Viskari et al., 2019). However, as light is often the limiting 
resource in dense tropical canopies, it plays a critical role for plant 
growth and development, often driving intraspecies and interspe-
cies competition and succession (Bongers & Sterck, 1998; Poorter 
et al., 2003). Moreover, in the context of global warming, a change 

of tropical ecosystem albedo might have important feedbacks on the 
regional climate (Piao et al., 2020).

Lianas are woody vines that are abundant in tropical ecosystems 
(Schnitzer, 2005) where they act as structural parasites of the forest 
(Stevens, 1987). They climb up the stems of other plants to reach the 
top of the canopy from which they compete for light and progres-
sively displace a significant fraction of tree leaf biomass with their 
own (Kazda & Salzer, 2000; Schnitzer et al., 2005; Selaya & Anten, 
2008). In tropical forests, lianas play a key role in vegetation dynam-
ics as they represent on average 25% of the woody stems (Dewalt 
et al., 2014; Schnitzer & Bongers, 2002) and contribute to 9%–31% 
of the total leaf area (van der Heijden et al., 2013).

Previous studies have demonstrated that the leaf spectral sig-
nature can significantly differ between tropical trees and lianas 
(Castro-Esau et al., 2004; Guzmán et al., 2018; Kalacska et al., 2007; 
Sánchez-Azofeifa et al., 2009). These findings are consistent with mul-
tiple observations of growth form-level differences in leaf biochemical 
traits. In particular, in a pantropical leaf trait analysis, Asner and Martin 
(2012) found larger mass-based concentrations of light capture–
growth chemicals (chlorophyll, carotenoid) and smaller leaf mass per 
area in liana leaves which might be responsible for those spectral dif-
ferences. Similarly, Wyka et al. (2013) showed in a large meta-analysis 
that lianas exhibit lower leaf mass per area and higher mass-based 
photosynthetic rates and nutrient (N and P) concentrations. These 
differences between lianas and trees (potentially in combination with 
differences in leaf angle distributions and canopy clumping) might also 
explain why a few seminal studies have observed an increase in albedo 
in canopies with high liana coverages (Kalacska et al., 2007; Marvin 
et al., 2016; Sánchez-Azofeifa & Castro-Esau, 2006). Liana leaves, be-
cause of their vertical position in the canopy and these biochemical 
properties contrasting with those of trees, could impact forest func-
tioning by increasing forest albedo and reducing light availability in the 
understorey. Forest energy balance might therefore significantly differ 
in liana-free and liana-rich patches. We argue that a significant part of 
the changes of albedo observed by remote sensing in tropical forests 

with lower pigment concentrations. Those traits made the lianas very efficient at light 
interception and significantly modified the forest energy balance and its carbon cycle. 
While forest albedo increased by 14% in the shortwave, light availability was reduced 
in the understorey (−30% of the PAR radiation) and soil temperature decreased by 
0.5°C. Those liana-specific traits were also responsible for a significant reduction of 
tree (−19%) and ecosystem (−7%) gross primary productivity (GPP) while lianas ben-
efited from them (their GPP increased by +27%). This study provides a novel mecha-
nistic explanation to the increase in liana abundance, new evidence of the impact of 
lianas on forest functioning, and paves the way for the evaluation of the large-scale 
impacts of lianas on forest biogeochemical cycles.

K E Y W O R D S
ecosystem demography model (ED2), forest albedo, forest energy balance, PROSPECT-5, 
radiative transfer models, structural parasitism, tropical lianas



    |  229MEUNIER et al.

(Doughty et al., 2018; Piao et al., 2020) might be due to liana infesta-
tion variability. This hypothesis is especially relevant to test in the con-
text of increasing liana abundance observed in the Neotropics (Phillips, 
2002; Schnitzer & Bongers, 2011), which could aggravate the impact of 
lianas on radiative transfer of tropical forests in the near future.

Despite their potential impact on forest biogeochemical cycles, 
lianas have generally been ignored in vegetation models and remote 
sensing products (Moorthy & Sruthi, 2019; Verbeeck & Kearsley, 
2016). However, the recent implementation of the lianescent growth 
form in the Ecosystem Demography model (di Porcia e Brugnera 
et al., 2019; Meunier et al., 2020) now supports evaluating the role 
of lianas on the energy budget of tropical ecosystems under chang-
ing environmental conditions. Because vegetation models combine 
the biophysics of land surface models with vegetation demography 
and biogeochemistry (Dietze et al., 2014; Fisher et al., 2014; Purves 
& Pacala, 2008), they are excellent candidates for studying and pro-
jecting the impacts of climate change and resulting forest compo-
sition evolution (such as liana proliferation) on the radiation profile 
and forest albedo (Fisher et al., 2018).

The objective of this study is to investigate how lianas influence 
the energy budget and the biogeochemical cycles of tropical forests 
by altering light interception. We hypothesize that liana-specific op-
tical traits (such as lower leaf mass per area, larger mass-based con-
centrations of light capture–growth chemicals, horizontal leaves) are 
responsible for a disproportionate light interception by liana leaves, 
which results in (i) a decreased understorey light availability, (ii) an 
increased albedo, and (iii) a decline of tree productivity in heavily 
infested forest patches.

2  |  MATERIAL S AND METHODS

To estimate the impact of liana-specific traits on the radiative trans-
fers of tropical forests, we first assembled a database of liana leaf-level 
reflectance measurements from literature, along with stand-level re-
flectance spectra covering different levels of liana infestation. We as-
similated the collected spectra to derive leaf biochemical and canopy 
structural properties using leaf-level (PROSPECT-5) and stand-level 
(ED-RTM) radiative transfer models and estimate how those traits di-
verge between tropical trees and lianas. We then ran simulations of a 
process-based vegetation model (ED2.2), in which lianas were in turn 
characterized by liana or tree parameter distributions. We validated 
the principal findings of this study with independent experimental 
datasets (WorldView-3 and GatorEye UAV-LiDAR). The overall work-
flow of this study is illustrated in Figure 1.

2.1  |  Model description

2.1.1  |  The PROSPECT-5 model

The PROSPECT-5 model simulates the spectral reflectance and trans-
mittance of a leaf over a large wavelength range covering the visible 

(400–700 nm), near infrared (700–1400 nm), and short-wave infrared 
(1500–2500  nm) at the nanometer resolution. PROSPECT-5 repre-
sents leaves as stacks of partially reflective/transparent layers and 
is based on five biochemical and structural properties, namely the 
total chlorophyll (Cab) and Carotenoid (Car) contents, the number of 
stacked elementary homogeneous layers (Nlayers), the leaf equivalent 
water thickness (Cw) and its dry matter content (LMA; Feret et al., 
2008). Wavelength-specific reflectivity and transmissivity coeffi-
cients are then calculated as a weighted linear combination of the em-
pirically calibrated absorption spectra for leaf pigments, water, and 
dry matter (Feret et al., 2008). Table 1 summarizes the parameters 
discussed in this study, together with their units and their description.

2.1.2  |  The Ecosystem Demography model, 
version 2

Overview of the vegetation model
The Ecosystem Demography model version 2.2 (ED2.2) is a vegeta-
tion model that simulates forest biophysical and physiological cy-
cles, and accounts for horizontal and vertical heterogeneities of the 
ecosystem (Longo et al., 2019a). Carbon, water, and energy cycles 
are solved for individual forest patches, each containing zero, one, 
or several plant cohorts. Patches are defined as areas of the forest 
with similar age (i.e. disturbance history) while cohorts are groups 
of plants in a patch with similar size (DBH), belonging to the same 
plant functional type (PFT), and characterized by a dynamic plant 
density (nk). In ED2, patches and cohorts are spatially implicit, which 
means that the position of patches relative to one another and the 
horizontal position of each plant are not simulated (Medvigy et al., 
2009). Yet, plants grow in an environment (soil, climate) defined by 
the coordinates of the simulated site (Longo et al., 2019a) and the 
structure of the canopy is vertically resolved.

Previous studies have demonstrated the ability of the 
ED2.2 model to reproduce important aspects of carbon and water 
dynamics in tropical ecosystems (Longo et al., 2019b). In particular, 
it was shown that ED2 could correctly simulate reductions in abo-
veground biomass of Amazon forests subjected to drought experi-
ments (Powell et al., 2013), capture mortality rates, and aboveground 
biomass stocks on Barro Colorado Island (BCI), Panama (Powell et al., 
2017), and represent leaf and biomass spatial and temporal vari-
ability in tropical dry forests (Xu et al., 2016). Recently, a new plant 
functional type accounting for the lianescent growth form was im-
plemented in the ED2 model by di Porcia e Brugnera et al. (2019). 
The liana PFT was extensively calibrated by Meunier et al. (2020), but 
that calibration did not include radiative transfer parameters.

The radiative transfer model of ED2
In ED2, the radiative transfer is modelled as a multi-layer version of the 
two-stream model (Liou, 2002; Sellers, 1985) applied to three broad 
spectral bands: visible (400–700 nm), solar (near and shortwave) in-
frared (700–3000 nm), and thermal infrared radiation (3–15 µm). The 
two-stream approach is the core canopy radiative transfer model of 
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multiple global vegetation models, including JULES (Best et al., 2011) 
and CLM (Lawrence et al., 2019; Oleson et al., 2013). In this study, we 
focused on the visible and solar infrared bands as we wanted to test 
the impact of liana traits on short-wave radiation.

In ED2, the radiation regime is based on single scattering and 
backscattering coefficients computed from prescribed PFT-specific 
leaf transmissivity (τvis and τIR for the visible and solar infrared bands, 
respectively) and reflectivity (ρvis and ρIR) coefficients, as well as a 
leaf orientation parameter ω and the vertical structure of the can-
opy. Leaf orientation ω is a PFT-specific parameter that determines 
the average leaf surface area in the direction of the radiation beam. 
It varies between −1 (all leaves are vertically oriented) and +1 (all 
leaves are horizontally oriented), with 0 meaning randomly oriented 
leaves. The vertical structure of the canopy is determined by the 
size distribution of the plant cohorts within each patch. Each cohort 
k is represented by a flat-topped layer whose vertical position hk is 
scaled with its diameter DBHk according to a Weibull function: 

where href, b1Ht and b2Ht are PFT-specific allometric parameters. As 
opposed to trees, liana vertical position is not only determined by their 
size but also by the height distribution of the trees in the vicinity: in 
the model, lianas can only overtop trees belonging to the same patch 
by a small threshold because they lack self-supporting tissues (Meunier 
et al., 2020). Liana initial height was determined by their size and the 
height distribution of the surrounding trees so that all lianas with a stem 
diameter >3 cm reached the top of the forest canopy, resulting in a liana 
vertical clumping (Meunier et al., 2020). This is consistent with the find-
ing that lianas with a DBH above 3 cm have a 95% probability or higher 
of being in the canopy, as observed by Kurzel et al. (2006) in multiple 
tropical forests including some investigated in this study (see below).

The optical thickness of each layer is computed from the total 
plant area index which is the sum of the wood and the clumping-
corrected leaf area index. In this study, we chose to neglect the 

(1)hk = href ⋅
(
1 − exp

(
− b1Ht ⋅ DBH

b2Ht

k

))
,

F I G U R E  1  Workflow of the study as divided in three steps. Observed leaf spectra of both lianas and trees were assimilated to optimize 
leaf biochemical parameters of those PFTs through PROSPECT-5 simulations (Step 1). Leaf optical and biochemical traits were further 
calibrated in a radiative transfer model (ED-RTM) together with liana and tree canopy parameters through the assimilation of canopy 
reflectance spectral data under low and high liana infestation levels (Step 2). The resulting parameter posterior distributions then served 
to evaluate the impact of liana leaf parameters in a vegetation model (ED2.2) in simulations with and without liana-specific leaf and 
canopy parameters. In these runs, liana LAI-related parameters (b1Bl, b2Bl, and LMA) were systematically sampled from liana parameter 
distributions to conserve a similar ecosystem LAI. In steps 1 and 2, all parameters indicated on the side were optimized to fit observational 
data within a Bayesian framework. Throughout the manuscript, lianas (and liana-rich forest stands) are consistently represented in blue 
[Colour figure can be viewed at wileyonlinelibrary.com]

https://onlinelibrary.wiley.com/
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wood area given the relatively low contribution of wood to the plant 
area index (around 10%, Olivas et al., 2013) and hence its limited im-
pact on the radiative transfers (Viskari et al., 2019), the low number 
of observations of liana wood optical properties as well as to limit 
the number of parameters to calibrate. Therefore, the total plant 
area index of each cohort (φk) was given solely by the leaf area index 
(LAIk). In ED2, each cohort crown occupies the full patch horizontal 
area (i.e. cohort leaves are distributed across the entire patch) but 
plant leaf area is corrected by a PFT-specific clumping factor (Ω). Ω 
is a purely horizontal clumping factor reducing the cohort light inter-
ception. In ED2, it is a constant that does not depend on the direc-
tion of the incident beam but is intended to compensate for the fact 
that radiative transfer is solved in 2D rather than in 3D. Ω can vary 
between 0 and 1 and these numbers, respectively, represent the 
two extreme situations of a perfectly clumped (infinite LAI over an 
infinitesimally small area and null effective light interception, Ω = 0) 
and an evenly spread canopy (which captures the maximum amount 
of light per unit of leaf area, Ω = 1). This parameter is particularly rel-
evant for lianas whose spatial distribution was shown to be clumped 
(Ledo & Schnitzer, 2014; Schnitzer et al., 2012).

Cohort LAI (LAIk) is the product of the plant-level leaf biomass 
(Bleaf,k which scales with diameter through another allometric equa-
tion), the plant density (nk) and the PFT-specific dry matter content 
(LMA). Therefore, the cohort plant effective area index φk is given by: 

with b1Bl and b2Bl the PFT-specific leaf biomass allometric intercept 
and slope coefficients, respectively. The relevant parameters are again 
further described in Table 1. The complete description of the radia-
tive transfer model of ED2 can be found in Appendix A, in Longo et al. 
(2019a), or in Shiklomanov, Dietze, et al. (2020).

Recent work (Shiklomanov, Bond-Lamberty, et al., 2020; 
Shiklomanov, Dietze, et al., 2020) has refined the ED2 model's visi-
ble and solar infrared spectral resolution to nanometer-scale bands 
by coupling it with PROSPECT-5, which provides fine leaf spectral 
properties, so as to allow direct comparisons to multi- and hyper-
spectral data. This model version (a.k.a. ED-RTM) is instantaneous 
(the model runs for a single time step at user prescribed time and 
date) and allows computing radiative transfers within the canopy 
and the forest albedo down to the nanometer spectral resolution.

2.2  |  Experimental workflow

2.2.1  |  Literature meta-analysis

We first collected published spectral data through an extensive 
literature search on science research engines (Web of Science and 
Google Scholar) with a combination of the following keywords: 
‘liana/woody vine’, ‘spectrum’, ‘reflectance’, and ‘canopy/leaf/
leaves’. We compiled records presenting leaf spectral measurements 
of both tropical lianas and trees, or canopy spectral measurements 
covering different levels of liana infestation in tropical forests. In 
the latter case, we only analysed the measurements with the lowest 

(2)Φk = Ω ⋅ LAIk = Ω ⋅

�
nk ⋅ Bleaf,k

LMA

�
= Ω ⋅

⎛
⎜⎜⎜⎝

nk ⋅
�
b1Bl ⋅ DBH

b2Bl

k

�

LMA

⎞
⎟⎟⎟⎠
,

TA B L E  1  Leaf biochemical and canopy structural traits of the radiative transfer models used in this study, together with their prior 
distributions for lianas and trees as well as the posterior medians

Abbreviation Units Description PFT Prior Prior parameters Posterior median [95% CI]b

Cab µg cm−2 Leaf chlorophyll area density Liana
Tree

Uniform
Uniform

a = 0, b = 150
a = 0, b = 150

45.5 [45.3 45.6]
56.6 [56.4 56.8]

Car µg cm−2 Leaf carotenoid area density Liana
Tree

Uniform
Uniform

a = 0, b = 50
a = 0, b = 50

15.9 [15.8 6.0]
20.6 [20.5 20.8]

Cw cm Equivalent water thickness Liana
Tree

Uniform
Uniform

a = 0, b = 0.1
a = 0, b = 0.1

0.0152 [0.0151 0.152]
0.0199 [0.0197 0.0200]

LMAa kg m−2 Leaf dry matter content per unit 
area

Liana
Tree

Uniform
Uniform

a = 0.01, b = 1
a = 0.01, b = 1

0.064 [0.064 0.064]
0.087 [0.086 0.088]

Nlayers — Effective number of mesophyll 
layers

Liana
Tree

Uniform
Uniform

a = 1.01, b = 5
a = 1.01, b = 5

1.76 [1.76 1.77]
2.06 [2.05 2.06]

b1Bl kg plant−1 cm−b2Bl Leaf biomass allometry intercept Liana
Tree

Normal
Normal

a = 0.049, b = 0.010
a = 0.020, b = 0.005

0.049 [0.049 0.049]
0.020 [0.020 0.020]

b2Bl — Leaf biomass allometry slope Liana
Tree

Normal
Normal

a = 1.89, b = 0.2
a = 1.85, b = 0.2

1.89 [1.89 1.90]
1.85 [1.85 1.85]

ω — Leaf orientation factor Liana
Tree

Uniform
Uniform

a = −0.5, b = 0.5
a = −0.5, b = 0.5

0.33 [0.32 0.34]
−0.42 [−0.42 −0.41]

Ω — Leaf clumping factor Liana
Tree

Uniform
Uniform

a = 0.4, b = 1
a = 0.4, b = 1

0.72 [0.71 0.72]
0.48 [0.48 0.48]

Note: The prior parameters column provides the minimum (a) and maximum (b) values for the uniform distributions, or the mean (a) and the standard 
deviation (b) for the normal distributions.
aEquivalently referred to as Cm (the units of which are g cm−2 in PROSPECT-5).
bPosteriors from all studies/sites.
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and highest liana coverages (hereafter referred to as liana-free and 
liana-infested stands) to capture the maximal differences in canopy 
spectra generated by liana infestation. We focused on data that 
overlapped the spectral region of interest: the visible and the solar 
infrared regions of the spectrum (400–2500 nm). Seven references 
emerged from our extensive search. These references could be 
categorized in three groups: studies that investigated leaf-level re-
flectance only (3), patch-level reflectance only (3), or both (1), see 
Table 2. In total, we compiled 1689 leaf spectra (1162 from lianas, 
527 from trees) and eight patch-level average canopy spectra.

All five study sites were located in Latin America (Panama, Costa 
Rica, and Bolivia). The sites were tropical dry (SRNP, PNM, Gigante), 
wet (FTS) forests, or on the border of two climatic zones (SRNP), see 
Table 3. All leaf spectra were collected using field portable spec-
trometers on multiple leaf (3–15) samples from multiple liana (8–26) 
and tree (5–15) species. Stand-level spectra were obtained using dif-
ferent remote sensing techniques, including airborne spectrometers 
and satellite imaging (Table 3). Number of investigated tree crowns in 
crown/stand-level studies varied from a few (6 in Sánchez-Azofeifa 
& Castro-Esau, 2006) to a large number (288 in Kalacska et al., 2007 
and 554 in Marvin et al., 2016) while Foster et al. (2008) investigated 
a 771 km2 area with a 30 × 30 m footprint.

Only two of the studies, Guzmán et al. (2018) and Sanchez-
Azofeifa et al. (2009), made their raw data available. For those stud-
ies that did not provide their data, we digitized the spectra using the 
software Plot digitizer (v.2.6.8, http://plotd​igiti​zer.sourc​eforge.net/) 
from the relevant figures. At the leaf level, two studies (out of the 4) 
reported spectral data only for parts of the visible and the near infra-
red (450–950 nm). All four studies that investigated patch-level re-
flectance differences with liana infestation included a large fraction 
of the visible and the near/short-wave infrared (Table 2). The signifi-
cance of the liana impact was evaluated by testing whether the 95% 
confidence intervals of the difference of the spectra (liana vs. tree, 
liana-free vs. liana-infested) in a specific region included zero.

2.2.2  |  Model calibration

To calibrate the leaf and the canopy spectra, we used the R package 
PEcAnRTM (https://github.com/Pecan​Proje​ct/pecan/​tree/devel​op/
modul​es/rtm). This approach uses a Bayesian framework that pro-
vides the joint probability posterior distribution of the parameter 
set, thus capturing both the uncertainties and correlations among 
parameters. The independent prior distributions used in this study 
are included in Table 1. All but the priors of the leaf biomass allo-
metric coefficients are uninformative. The residual variance σ2 was 
assigned an uninformative inverse gamma prior as in Shiklomanov 
et al. (2016). We fit the respective models using the Differential 
Evolution with Snooker Update (‘DEzs’) Markov-Chain Monte Carlo 
(MCMC) sampling algorithm (ter Braak & Vrugt, 2008) as imple-
mented in the R package BayesianTools (Hartig et al., 2019). For each 
inversion, we ran five independent chains until convergence with a 
burn-in of 50,000 and 100,000 iterations for leaf and canopy scales, TA
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respectively. We evaluated the quality of the model calibration at the 
leaf level and the stand level by comparing modelled and observed 
reflectance values and by computing several error statistical metrics 
(the root mean square error [RMSE], bias [BIAS], and bias-corrected 
RMSE (SEPC) averaged across the visible [400–700 nm], the near in-
frared [700–1400 nm], and the short-wave infrared [1500–2500 nm] 
regions of the spectrum), see Supplementary Appendix B for more 
details.

Estimating leaf optical traits from leaf spectra
For all studies for which we had leaf-level reflectance data, we esti-
mated all five PROSPECT-5 leaf-level parameters (Figure 1, step 1), 
through the exact same spectral inversion procedure described by 
Shiklomanov et al. (2016). We repeated the PROSPECT-5 inversion 
for each site/study and each PFT. When raw data were available, we 
fitted PROSPECT-5 parameters individually to each plant species. 
After calibration, we aggregated all study/site posteriors to the PFT 
level (liana or tree) by attributing a similar weight to each of them.

Refining leaf optical trait estimates from canopy spectra
For the studies for which patch-level reflectance data were avail-
able, we followed Shiklomanov, Dietze, et al. (2020) to carry out a 
similar calibration scheme using ED-RTM. The calibrated model pa-
rameters include the leaf parameters of PROSPECT-5 plus the leaf 
allometric coefficients, the leaf orientation, and the clumping factor 
(Figure 1, step 2). We used the aggregated posterior distributions 
from step 1 as informative prior distributions for the PROSPECT-5 
parameters. The priors of leaf biomass allocation coefficients were 
informed by an independent literature review (Falster et al., 2015; 
Gehring et al., 2004; Gerwing & Farias, 2000; Putz, 1983; Schnitzer 
et al., 2006; Smith-Martin et al., 2020) through which we collected 
all leaf biomass allometric data comparing trees and lianas (Meunier 
et al., 2020). These data originate from multiple biomes (tropical wet 
and dry forests) in multiple countries (Brazil, Venezuela, Cambodia, 
French Guiana, Paraguay, Costa Rica). Informed priors of leaf bio-
mass allometric coefficients were built based on the fit of the al-
lometric equation of ED2 to these data using the PEcAn.allometry 

package (https://github.com/pecan​proje​ct/pecan/​tree/devel​op/
modul​es/allom​etry).

In ED-RTM, we simulated two competing PFTs, respectively, ac-
counting for lianas and tropical trees. For the purpose of the can-
opy inversion, we assumed that all trees at a given site shared the 
same spectral property distributions, and all lianas likewise shared 
another set of spectral property distributions. As for the leaf-level 
studies, we performed a separate calibration for every single study 
and site (Table 2) and aggregated the posterior distributions giving 
the same weight to every calibration. This approach allowed a better 
fit for every leaf canopy spectra while accounting for the inter-site 
variability of liana and tree properties.

When both leaf- and patch-level reflectance data were avail-
able (Kalacska et al., 2007), we performed a similar two-step cali-
bration. Yet, as compared to the other stand-level calibrations, we 
only used the site-specific PROSPECT-5 posterior distributions as 
priors in the second step to derive canopy structural traits. To im-
prove the vertical resolution of the radiative transfer, we prevented 
cohort fusion during the calibration of ED-RTM. Therefore, every 
single plant cohort (liana or tree) consisted of a single individual (see 
Supplementary Figure F5).

2.2.3  |  Evaluating the impacts of liana-specific traits

To determine the impact of lianas on forest radiative transfers and 
biogeochemical cycles, posterior distributions of leaf and canopy 
traits of both PFTs resulting from the two-step calibrations were 
used to parameterize the full version of the ED2.2 vegetation model 
(Figure 1, step 3). We generated two ensembles of 100 simulations 
each in which liana radiative traits were sampled either from the 
liana (‘liana’ runs) or the tree (‘reference’ runs) posterior distribu-
tions. Liana leaf biomass allometric parameters (b1Bl and b2Bl), dry 
matter (LMA), and all tree parameters were systematically sampled 
from their proper PFT distributions. This allowed us to evaluate 
the impact of the leaf radiative parameters (the visible and infrared 
transmissivity and reflectivity coefficients – τvis, ρvis, τIR, and ρIR – leaf 

TA B L E  3  Basic information related to the sites included in the meta-analysis and the instruments used to obtain the leaf- and stand-level 
spectra

Study site Location (Lat, Lon) Forest type MAP (mm) MAT (°C) Instrument (study short name)

SRNP, Costa Rica 10.8°N; 85.6°W Tropical dry forest 1600 26.5 UniSpec Spectral Analysis System

PNM, Panama 8.99°N; 79.55°W Tropical dry, secondary forest 1750 25 - UniSpec Spectral Analysis System 
(Castro PNM, Sanchez PNM)

- ASD Fieldspec spectrometer 
(Kalacska, Sanchez)

- Hyperspectral Digital Imagery 
Collection Experiment (Kalacska)

FTS, Panama 9.28°N; 79.98°W Tropical old-growth wet forest 3300 26.5 UniSpec Spectral Analysis System

Gigante, Panama 9.1°N; 79.8°W Seasonally dry, secondary 
tropical moist forest

2400 25.5 Airborne Taxonomic Mapping System 
(AToMS) visible-to-short-wave 
infrared imaging spectrometer

NKMNP, Bolivia 13.93°S; 61.11°W Tropical wet-dry forest 1450 25.5 EO-1 Hyperion

https://github.com/pecanproject/pecan/tree/develop/modules/allometry
https://github.com/pecanproject/pecan/tree/develop/modules/allometry
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angle ω and leaf clumping Ω) on forest functioning while conserving 
identical ecosystem LAI.

We ran the model on the 50 ha plot of BCI, Panama, which is 
an old-growth seasonally moist lowland tropical forest. Previous 
ED2  simulations demonstrated the model's capacity to reproduce 
land surface fluxes (di Porcia e Brugnera et al., 2019) and several 
features of the liana-tree competition there (Meunier et al., 2020). 
BCI is characterized by an average (years 2003–2016) annual rainfall 
of about 2640 mm (Detto et al., 2018) and a well-marked 4-month 
dry season (total rainfall between late-December and mid-April is 
175 mm on average). We used the 2007 liana inventory and the tree 
inventory that was carried out immediately afterwards (2010) to 
prescribe the vegetation initial conditions. These censuses included 
all individuals whose DBH is larger than 1 cm in the 500 m × 1000 m 
plot (Condit et al., 2019; Schnitzer et al., 2012). The 50 ha site was 
divided into an initial number of 1250 patches in a regular grid of 
20 × 20 m. Initial liana density averaged 1429 individuals per hect-
are and varied significantly from liana-free to liana-infested patches 
(liana density standard deviation was 1013 individuals per hectare). 
Model simulations were run for 5 years starting in 2007 using the 
meteorological drivers locally available (Powell et al., 2017, 2018). 
We also used the observed carbon and energy land fluxes obtained 
with the eddy-covariance method to benchmark the modelled pro-
ductivity, evapotranspiration, and albedo (Pau et al., 2018). The 
other model parameters for the liana and the tree PFTs are exhaus-
tively described in Meunier et al. (2020) and in Longo et al. (2019a).

We analysed the differences between model outputs with a spe-
cial focus on the energy budget and the carbon cycle. These differ-
ences were evaluated as both absolute (‘liana’ runs minus ‘reference’ 
runs) and relative (absolute differences normalized by the ‘reference’ 
runs) changes.

In addition, we also simulated the instantaneous radiative trans-
fers at the same site using ED-RTM and finer patch and cohort 
resolutions (the regular grid of 20 × 20 m kept unfused and every 
single plant as a ‘cohort’) and the posterior median of every single 
parameter. Again, liana optical traits were either assigned liana- or 
tree-specific values. We then related the changes of forest albedo 
and understorey light (defined as the downward radiation below the 
shortest plant or the radiation reaching the ground) to the degree of 
liana infestation by fitting the coefficients ymax and b of the follow-
ing equation using the ‘nlsLM’ function of the minpack.lm R package 
(Elzhov et al., 2016): 

where y is the response (forest albedo in the visible and in the infra-
red, or the understorey light) and x is the contribution of lianas to the 
ecosystem LAI.

Finally, we ran uncertainty analyses of every single model used in 
this study (PROSPECT-5, ED-RTM, and ED2.2) with PEcAn (LeBauer 
et al., 2013). In short, PEcAn combines the uncertainty of model 
parameters after calibration with a univariate sensitivity analysis to 
estimate the contribution of each parameter to the overall predictive 

uncertainty, see Supplementary Appendix C for details. All intervals 
presented in this study are 95% confidence intervals (CI).

2.3  |  Independent evaluation of model outputs

We validated the main model outputs using independent datasets. In 
particular, we evaluated the impacts of lianas on forest albedo using 
WorldView-3 images and on light penetration through the canopy 
using GatorEye UAV-LiDAR.

2.3.1  |  WorldView-3

To validate the changes in albedo due to liana infestation, we ob-
tained a WorldView-3 image of central Panama acquired on 24 
March 2016. The image has a 2  m spatial resolution, 2.6  degree 
mean off-nadir view, 67.9  degree mean sun elevation, with 11.5% 
cloud cover. The image was corrected to surface reflectance using 
Fast Line-of-sight Atmospheric Analysis (Cooley et al., 2002; http://
www.harri​sgeos​patial.com). The scene included a cloud-free area 
of georeferenced tree crowns on Gigante Peninsula (south of BCI) 
where liana infestation of 544 trees was tallied from the ground with 
binoculars using the liana crown occupancy index (COI, see Marvin 
et al., 2016). This resulted in over 8000 pixels with ground refer-
enced infestation scores. To investigate the effect of liana infesta-
tion on forest albedo, we compared the reflectance of crowns with 
extreme levels of liana occupancy (0.05 < COI < 0.25 vs. COI > 0.75) 
across six spectral bands (from blue to NIR-2), using independent 
nonparametric Mann–Whitney U tests for each band and the COI 
category as treatment. The two liana-infestation levels resulted in 
large numbers of samples in both groups (5866 and 387 for low and 
high COI, respectively, totalling 2.35 and 0.15 ha).

2.3.2  |  UAV LiDAR

To evaluate whether liana-rich stands differed in light extinction, 
GatorEye UAV-borne LiDAR data obtained on BCI in February 
2019 were combined with a local dataset of COI. Tree crowns were 
mapped for a total of 2133 individuals. Each crown was manually de-
lineated from UAV-derived orthomosaic of the 50 ha plot of BCI, as 
described in Park et al. (2019). Each delineated tree crown was then 
visited in the field and a liana crown occupancy index was recorded 
from the ground. UAV-borne LiDAR data were collected at 905 nm, 
using the GatorEye Unmanned Flying Laboratory (see www.Gator​
Eye.org for detailed description and data access) at the 50 ha plot 
on Barro Colorado Island. GatorEye Gen 1 uses a DJI Matrice 600 
Pro hexacopter, equipped with a Velodyne VLP-16 puck lite sensor 
with manufacturer calibrated intensity, as well as hyperspectral and 
visual sensors not used in this study. Flights were conducted at 55 m 
aboveground level (AGL), with an 80% sidelap, and at an average 
speed of 40  km/h. The LiDAR spatial footprint has a diameter of 

(3)y = ymax
[
1 − exp ( − b ⋅ x)

]

http://www.harrisgeospatial.com
http://www.harrisgeospatial.com
http://www.GatorEye.org
http://www.GatorEye.org
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3–9 cm at 10–30 m distance, resulting in an average canopy height 
(30 m AGL) footprint of 7.5 cm diameter.

We compared the manufacturer calibrated intensity, as mea-
sured by the LiDAR, between liana-free and highly infested trees, as 
reflected by the individual tree COI. LiDAR intensity varies with sur-
face reflectivity, leaf density in the canopy, and distance. Yet, as the 
distance from sensor to tree canopies was approximately the same 
across the entire plot and we average thousands of returns per quad-
rant, intensity is expected to provide a good estimation of relative 
differences in reflectivity and leaf density among the sample areas. 
In other words, LiDAR intensity should differ between liana-free and 
liana-infested tree crowns only if the projected leaf area and/or leaf 
traits within the beam footprint differs. Higher return rates (as indi-
cated by a larger intensity) and hence larger light extinction coeffi-
cient could therefore be caused by more uniform leaf distribution 
(smaller clumping), more horizontal leaves, larger leaf reflectivity, or 
a combination of these three factors.

We compared the relative (scaled between 0 and 1) LiDAR inten-
sity of crowns with extreme levels of liana occupancy (COI < 0.25 vs. 
COI > 0.75), using a nonparametric Mann–Whitney U test with the 
liana infestation level as treatment. These two categories resulted in 
a large number of individual crowns in both groups (1486 and 417 for 
low and high COI, respectively).

3  |  RESULTS

3.1  |  Leaf biochemical and canopy structural trait 
differences between growth forms

Most collected leaf-level studies agreed on the direction of the 
discrepancies between liana and tree leaf spectra (Supplementary 
Appendix D). Five out of the six leaf-level collected references indi-
cated that liana leaves were significantly more reflective than tree 
leaves in the visible (especially in the green peak) until the red edge 
(680–700  nm). The sixth study, Sanchez (FTS), showed no differ-
ences, on average, between liana and tree leaves in the visible re-
gion of the spectrum. In the near infrared (700–1400 nm), all studies 
agreed on a significantly lower reflectance of liana leaves at least 
until 950  nm (the upper limit of spectral measurements in Castro 
(FTS), Castro (PNM) and Guzmán, see Table 2). In the short-wave 
infrared (1500–2500 nm), liana leaves were variably characterized 
as having on average higher (Kalacska), lower (Sanchez, PNM), or 
the same (Sanchez, FTS) reflectance as tree leaves. At the canopy 
level, all four studies found higher reflectances for liana-infested 
patches in the visible and short-wave infrared, and all but Kalacska 
also found higher reflectance in the near infrared (Supplementary 
Figure C2 and Table C1).

Both PROSPECT-5 and ED-RTM were able to accurately re-
produce observed leaf and canopy spectra from individual studies 
across the whole spectrum (Supplementary Appendix E). At the leaf 
level, r2 of observed vs modelled leaf reflectance values grouped 
by wavelength reached on average 0.91, with no values lower than 

0.75 (Supplementary Figure E3). Overall simulated leaf spectra re-
produced discrepancies between liana and tree leaf reflectance 
values both in the visible and in the infrared (Supplementary Table 
D1). Similarly, at the canopy level, model performance after model 
calibration was good with a mean r2 of .93 for observed vs. simulated 
reflectance values across all wavelengths, and none lower than 0.71 
(Supplementary Figure E3). Observations of reflectance discrepan-
cies between forest stands with different infestation levels were 
also well reproduced by the best set of parameters, both in the visi-
ble and in the infrared (Supplementary Table E1).

Liana and tree parameter distributions had large variances and 
therefore largely overlapped across and within studies. However, 
we did observe significant differences in central tendencies. All 
calibrations predicted lower chlorophyll contents in liana leaves as 
compared to tropical tree leaves (Supplementary Figure F1). The dif-
ference between chlorophyll content in liana and tree leaves reached 
−11.1 µg cm−2 when averaging all studies (Table 1). Similarly, all stud-
ies/sites parameter calibrations predicted lower carotenoid contents 
in tropical liana leaves (on average −4.7 µg cm−2) and a smaller num-
ber of stacked layers (−0.3) corresponding to thinner leaves in liana 
species. The calibrations predicted either no differences or smaller 
dry matter content in liana leaves (LMA decreased on average by 
−0.022 kg m−2 for liana leaves). In addition, significant differences of 
water layer thickness Cw emerged in all studies/sites but one (Castro, 
PNM), leading to a mean water content increase of +3.7% in liana 
leaves (once combined with LMA). Altogether, those traits resulted 
in significant increases in liana leaf transmittance (+0.02 in the vis-
ible and +0.01 in the solar infrared) and reflectance in the visible 
(+0.004), as well as a significant decline in liana leaf reflectance in 
the near infrared (−0.01), see Figure 2a (as well as Supplementary 
Figure F2).

Leaf allometric intercepts already differed between growth forms 
according to the literature meta-analysis (Table 1) and were further 
discriminated by model calibration (Supplementary Figure F1). The 
slope of the leaf biomass allometric equation was slightly larger for li-
anas, before and after calibration (Table 1 and Supplementary Figure 
E1). Together, these leaf biomass allometric coefficients drew the 
picture of a larger carbon allocation to leaf biomass by lianas than 
by trees of similar DBH across all sizes (Figure 2b). All four studies 
that measured the impact of liana coverage on canopy reflectance 
revealed, after calibration, more horizontal leaves for lianas than for 
trees (Supplementary Figure F1), resulting in flatter leaf angles for 
lianas (Figure 2c). In addition, lianas were systematically predicted to 
have larger clumping factors (i.e. larger light interception per unit of 
leaf area) as compared to trees (Figure 2c; Table 2).

3.2  |  Impact of liana traits on forest 
biogeochemical cycles

The leaf biochemical and canopy structural traits of lianas deeply im-
pacted the energy balance and the carbon cycle of the forest, as sim-
ulated by ED2 (Figure 3). Liana leaf traits increased in forest albedo: 
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over the 5 years of simulation, the energy reflected back to the at-
mosphere increased on average by 17.1% in the PAR mainly because 
of the higher reflectivity of liana leaves in the visible region and by 
11.7% in the infrared driven by more horizontal angle distribution of 
liana leaves and larger clumping factors (Supplementary Appendix 
C). This corresponded to an additional 3.6 W m−2 of energy that was 
sent back to the atmosphere (Supplementary Figure F3). A larger 
fraction of the penetrating forest solar radiation was absorbed by 
the canopy in the runs where liana-specific traits were attributed to 
lianas (i.e. ‘liana’ runs), with an average increase by 7.4% and 7.8%, 
respectively, in the visible and the solar infrared (or +8.2 W m−2 in 
total). Hence, fewer photons reached the ground resulting in darker 
understories (−11.8 W m−2 as summed up over the visible and the 
infrared, corresponding to a 22% decrease) and slightly cooler soils 
(on average −0.5°C in the topsoil over the 5 years of simulations).

The ecosystem-level increase in albedo and decrease in understo-
rey light were mainly driven by the liana-rich patches on BCI (Figure 4). 
In liana-infested patches, the increase in albedo reached up to 0.05 in 
the infrared and 0.002 in the visible, while light reaching the ground 

could be reduced by more than 50%. On BCI, the liana optical traits in-
creased the short-wave albedo by +0.015 on average, which improved 
the fitness of the simulated outgoing short-wave radiation when com-
pared to the fluxtower data: RMSE of the modelled versus observed 
reflected short-wave radiation decreased from 2.2 to 1.7 W m−2 once 
liana traits were accounted for (Supplementary Figure F4).

The larger values of the leaf orientation parameter for lianas (i.e. 
more horizontal leaf distribution) and clumping parameters (i.e. more 
evenly distributed leaves) made lianas very efficient at light intercep-
tion (intercepted PAR by lianas increased by 48% on average when 
liana optical traits were accounted for). This translated into a large 
increase in both gross and net productivity of the liana PFT (+27.2% 
and +30.5%, respectively) while trees were negatively impacted by 
those liana-specific traits (tree GPP and NPP decreased by 19.1% 
and 23.8%, respectively). Tree productivity decline was not com-
pensated by liana gains: compared to the reference runs, ecosystem 
gross and net productivity decreased in the ‘liana’ runs by 6.8% and 
8.2%, respectively. Combined with a slight increase in heterotro-
phic respiration, the net ecosystem productivity was reduced by 

F I G U R E  2  Liana (blue) and tree (green) optical and canopy structural parameters, resulting from the leaf and canopy spectral calibrations. 
In (a), liana and tree mean reflectance (ρL and ρT, respectively) and transmittance (τL and τT, respectively) are plotted together with their 
differences (ρL − ρT and τL − τT) at the nanometer resolution. The light and dark grey envelopes, respectively, represent the 95% predictive 
and confidence intervals of the differences (liana – tree) resulting from 500 liana and tree PROSPECT-5 simulations sampled from the 
growth-form-specific posterior distributions. In (b), liana and tree mean (solid lines) allometric allocations to leaf biomass together with their 
confidence intervals (shaded envelopes) are superimposed on the data that served to constrain the prior distributions (collected through an 
independent meta-analysis). In (c), we compare the posterior distribution densities of liana and tree leaf orientation (left) and clumping factor 
(right), resulting from the calibration of the canopy spectra [Colour figure can be viewed at wileyonlinelibrary.com]
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1.6 TC ha−1 year−1 when liana-specific optical traits were accounted 
for. After 5  years of simulation, ecosystem AGB increased more 
slowly in the ‘liana’ runs as compared to the ‘reference’ ones (re-
duction of 4 TC ha−1): tree AGB increase was reduced by 4.5 TC ha−1 
while liana AGB was enhanced by 0.5 TC ha−1 (+11%). The simulated 
seasonal cycle of latent heat and gross primary productivity were 
both slightly improved when liana-specific optical traits were taken 
into account (Supplementary Figure F4).

3.3  |  Independent evaluation of model outputs

WorldView-3 images confirmed that liana-infested canopies were 
characterized by significantly higher albedos in the near infrared 
(+0.051 on average, p  <  2e-16) and in the green peak (+0.002, 
p =  .004), see Figure 5a. These numbers matched the asymptotes 
predicted by the radiative transfer model under extreme levels of 
liana infestation (Figure 4).

We could not validate individually the differences in canopy 
clumping and leaf angle of liana species but the GatorEye UAV-
LiDAR confirmed the more important canopy closure of liana-rich 
crowns resulting from the combination of such features (Figure 5b). 
Larger COI were associated with greater LiDAR intensities (p < 2e-
16), which indicates that there is a greater and more reflective leaf 
area within the footprint of the laser. As liana leaves tend to have 
lower reflectance around 900 nm (Figure 2a), the greater return in-
tensity of infested crowns is likely caused by a higher LAI of more 
horizontal leaves, more evenly spread canopies, or both, which is 
consistent with the posterior distribution discrepancies between 
growth forms (Figure 2c; Table 1).

4  |  DISCUSSION

4.1  |  Ecosystem-level impacts of lianas

This study is the first to comprehensively investigate the role of lia-
nas on the energy budget and radiative transfer of tropical forests. 
According to our model simulations, lianas significantly alter the for-
est energy cycle (Figure 3a). As hypothesized, liana optical traits are 
responsible for an increase in albedo and a decrease in light pen-
etration through the canopy, especially in the heavily infested forest 
patches (Figure 4). By increasing the light competition, liana traits 
also reduce tree carbon assimilation and the positive shift in liana 
productivity does not compensate for the tree drop, resulting in an 
overall decline of the ecosystem productivity (Figure 3b). Since liana 
abundance seems to be increasing in the Neotropics (Phillips, 2002; 
Schnitzer & Bongers, 2011), these findings might translate into im-
portant changes in the functioning of those tropical forests. If the 
liana impacts detected in this study (forest understorey darkening 
and reduced ecosystem productivity) were confirmed in a larger 
number of sites, liana proliferation could translate into a global 
weakening of forest carbon sink strength.

Yet, we note that these negative impacts could be mediated or 
even counterbalanced by other liana-induced effects. By reducing 
the solar radiation reaching the ecosystem (especially in the infra-
red), overtopping lianas could act as a protective mantle isolating 
tree leaves from rising temperatures and the resulting exacerbated 
evaporative demand expected in the tropics (Konapala et al., 2020). 
Lianas could also help maintain more appropriate soil conditions 
(temperatures and water content) and hence protect soil carbon res-
ervoirs as well as the critical biota living therein, which are currently 

F I G U R E  3  Mean relative changes (%) together with their confident intervals of the energy (a) and carbon (b) cycle fluxes resulting from 
the implementation of the liana radiative model parameters. These changes are relative to the fluxes simulated when lianas were assumed to 
have the same radiative and structural parameters as trees. Fluxes are coloured in red (respectively green) when the mean relative changes 
of the corresponding fluxes are lower than −5% (respectively higher than +5%) [Colour figure can be viewed at wileyonlinelibrary.com]
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threatened by increasing soil temperatures (Mitchard, 2018). Finally, 
as degraded forests with more open canopy (and hence warmer un-
derstorey temperatures) are more flammable during mild/moderate 
droughts (Longo et al., 2020), the susceptibility to fires could also be 
reduced in liana-infested patches. Those potential positive effects 
of lianas need to be confirmed in future field and modelling studies.

Finally, our results suggest that the increase in liana abundance 
observed in the Neotropics (Phillips, 2002; Schnitzer & Bongers, 
2011) could be driven by the higher efficiency of lianas to intercept 
light combined with an overall decrease in cloudiness in the area 
(Arias et al., 2011; Fu et al., 2013). The liana-specific leaf and canopy 
traits identified in this study coupled to earlier observations of effi-
cient hydraulic architectures (Chen et al., 2015, 2017; van der Sande 
et al., 2013) could indeed allow lianas to thrive through light-rich 
extended dry seasons and more frequent drought stress episodes, 
during which lianas have been shown to grow more than co-occurring 
trees (Schnitzer, 2005; Schnitzer & van der Heijden, 2019).

4.2  |  Study limitations

The most important limitation of this study is the representativity of 
the data that we collected through our meta-analysis. Although we 
were able to compile a large number of liana leaf spectra (>1000), 
they all originated from Latin America. Most of them were from a 
single country (Panama) and from a very limited number of sites (3, 
see Table 2). The stand-level spectra that we collected also all came 
from a limited number of sites in the Neotropics (3, see Table 2) and 
their number was more limited as we could not obtain any raw data. 
Yet, the meta-analysis performed in this study was comprehensive 
and therefore the limited spatial distribution of the sites reflects the 
absence of data elsewhere. The upscaling/extrapolation of our find-
ings to all tropical forests globally should therefore be performed 
with caution until additional liana spectra with more diverse origins 
have been collected and assimilated into the model. However, the 
potential important changes induced by lianas highlighted in this 
study should motivate further study on the short term in other 
tropical sites. In particular, leaf sampling in regions where lianas 
do not seem to be increasing (Bongers et al., 2020) could lead to 
a breakthrough for unravelling the mechanisms driving liana prolif-
eration. In addition, a publication bias could not be ruled out in our 
meta-analysis as the number of collected studies was too small to 
calculate publication bias diagnostics such as funnel plots (Koricheva 
et al., 2013). Yet, the inversion of the leaf spectra led to a pattern 
(lianas grow cheaper, thinner leaves, with lower pigment concentra-
tion and lower leaf mass per area), which is consistent with multi-
ple local observations (Castro-Esau et al., 2004; Sánchez-Azofeifa 
et al., 2009), the pan-tropical analysis of Asner and Martin (2012) 
who found smaller LMA and no differences or lower area-based light 
capture–growth chemical concentrations in liana leaves, and higher 
leaf turnover rates in liana-rich plots (van der Heijden et al., 2015). 
The main findings on liana structural and leaf properties (differences 
in leaf angle, clumping, and distributions) were also confirmed by 
ground truth validation based on canopy and leaf direct observa-
tions (Visser et al., 2021).

Furthermore, the ED2 (and ED-RTM) representation of infinitely 
thin crowns covering the entire patch and overtopping lianas prob-
ably contributes substantially to the large impact of lianas on forest 
albedo, and energy balance. These model structural uncertainties, 
even if they have been shown to be less critical than model param-
eter uncertainties for ED2 (Shiklomanov, Bond-Lamberty, et al., 
2020) and were minimized in the model and in our analyses (clump-
ing factor, cohort size limit), need to be accounted for in the future, 
by investigating the impact of plant crown size (Dietze et al., 2008) 
and crown depth representation (Fisher et al., 2010, 2018) in the 
canopy radiation model. Yet, the effects of liana abundance on al-
bedo predicted by the model are consistent with those observed 
in the original stand-level spectral data, as well as the independent 
Worldview-3  multispectral and GatorEye UAV-LiDAR data, sug-
gesting that the impacts of any structural biases are either minor 
or related to compensating errors that are not apparent in any of 
our diagnostics. Additional independent field data on the leaf angle 

F I G U R E  4  Changes in albedo (a) and understorey light 
availability (b) as a function of the liana infestation, expressed here 
as the contribution of lianas to the ecosystem LAI. In (a), the impact 
was split into changes of PAR (yellow) and infrared (green) albedo, 
and in both subplots we distinguished dense vegetation patches 
(LAI ≥ 3, closed symbols) and gaps (LAI < 3, open symbols). Fits 
were applied to all data points (dense canopies and gaps together) 
[Colour figure can be viewed at wileyonlinelibrary.com]
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distribution and leaf clumping would help rule out such compensat-
ing errors, but it is worth noting that the current parameter estimates 
are, at least qualitatively, consistent with our understanding of liana 
canopy morphology and liana ecology, more broadly. Our results are 
indeed in agreement with experimental observations of a steep in-
crease in forest net productivity once lianas are removed (van der 
Heijden et al., 2015) and further suggest that light competition is 
the critical driver of competition, as expected in dense tropical eco-
systems (Bongers & Sterck, 1998; Poorter et al., 2003). The strong 
reduction in light penetration induced by liana infestation was also 
evidenced in several liana removal experiments (Estrada-Villegas & 
Schnitzer, 2018). Finally, in the absence of better information on tree 
optical traits variability and to avoid overfitting issues, we chose to 
calibrate the ED-RTM model assuming that all trees shared the same 
distribution of spectral properties in each site/study. This is currently 
what is assumed in the ED2 model (Longo et al., 2019a). Yet, trees 
exhibit large variability of optical spectra (Visser et al., 2021), and 
therefore this assumption is an important limitation of our study and 
should be taken into account in future sensitivity and field analyses.

4.3  |  Perspectives

Our study opens new avenues to estimate the contribution of lianas 
on seasonal and interannual changes of forest albedo observed at 
large scales (Ahlström et al., 2017; Asner & Alencar, 2010; Brienen 
et al., 2015). Since liana leaf biomass, relative to trees, can increase 
during the dry season (Avalos & Mulkey, 1999; Schnitzer, 2005) and 
is expected to soar on the longer term (Phillips, 2002; Schnitzer & 
Bongers, 2011), liana-induced shifts in albedo could be visible both 
at short and long timescales. Vegetation model simulations could 

help estimate the future impact of lianas on tropical forest albedo 
and functioning, more broadly under contrasting global scenarios.

Our results (Figure 4 in particular) also suggest that multispectral 
sensors (alone or in combination with LiDAR) should be able to de-
tect forest stands characterized by high liana coverage. In a related 
study, Visser et al. (2021) demonstrate that lianas can be detected 
from remote sensing data. They also show how radiative transfer 
models can assist in the estimation of liana traits from hyperspectral 
images of liana-infested canopies just as it is currently achieved for 
trees (Gong et al., 2003; Meroni et al., 2004; Serbin et al., 2015). 
This is because liana-rich patches are similarly sensitive to liana pa-
rameters, just like liana-free forest stands are to tropical tree param-
eters (Supplementary Appendix C). Together this study and the one 
of Visser et al. (2021) who compiled a larger and better distributed 
library of liana spectra suggest that liana infestation changes could 
be detected at large scale with remote sensing and that our findings 
could be valid in a larger number of sites than those investigated 
here.

This study is a first step towards a comprehensive understanding 
and quantification of the impact of lianas on tropical forests. The 
current belief is that the increase in liana abundance driven by cli-
mate change and exacerbated by anthropogenic pressures could 
accelerate global warming by decreasing the carbon sequestration 
capacity of ecosystems (Reis et al., 2020; Schnitzer & Bongers, 2011; 
van der Heijden et al., 2015). Yet, to properly validate such a dra-
matic climate change-carbon feedback loop and to unravel the role 
lianas play therein, one needs to consider the interplay between the 
energy, the water, and the carbon cycles. Most studies that investi-
gated the role of lianas have neglected those interactions, primarily 
focusing on a single biogeochemical cycle. As illustrated here, cali-
brated vegetation models are key to reveal the relative magnitude of 

F I G U R E  5  Independent evaluation of the liana impacts on forest albedo (a) and light penetration (b). In (a), we compare the mean 
reflectance of liana-free (green, ρLF) and liana-infested (blue, ρLI) canopies. Boxplot widths correspond to half the size of the bands in the 
Worldview-3 images (indicated above). In (b), the relative intensity detected by UAV-borne LiDAR measurements is compared between low 
and high liana infestation. Higher values indicate higher return rates (and hence smaller light penetration into the canopy) [Colour figure can 
be viewed at wileyonlinelibrary.com]
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all the interacting and contradictory impacts lianas have on forests, 
as well as the feedbacks they create.

While lianas remain largely ignored by vegetation models, we 
demonstrate here that they alter the energy balance and the carbon 
cycle of tropical forests, which is per se a strong argument to take 
them into account when predicting the future land carbon sink.
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