684 research outputs found

    Does prophylactic sotalol and magnesium decrease the incidence of atrial fibrillation following coronary artery bypass surgery: a propensity-matched analysis

    Get PDF
    BACKGROUND: Atrial fibrillation can occur in up to 40% of patients undergoing coronary surgery. METHODS: We retrospectively analysed 103 consecutive coronary surgery patients under the care of one surgeon between April 2003 and September 2003. These patients received 40 mg of sotalol orally twice daily from the first post-operative day for 6 weeks and 2 g of magnesium intravenously immediately post surgery and on the first post-operative day. We developed a propensity score for the probability of receiving sotalol and magnesium after coronary surgery. 89 patients from the sotalol and magnesium group were successfully matched with 89 unique coronary surgery patients who did not receive either sotalol or magnesium with an identical propensity score. RESULTS: Preoperative characteristics were well matched between groups. There was no significant difference with respect to in-hospital mortality between groups (sotalol and magnesium 1.1% versus control 4.5%; p = 0.17). The incidence of atrial fibrillation in the sotalol and magnesium group was 13.5% compared to 27.0% in the controls (p = 0.025). CONCLUSION: The combination of sotalol and magnesium can significantly reduce the incidence of post-operative atrial fibrillation following coronary surgery

    Quantum Transduction of Telecommunications-band Single Photons from a Quantum Dot by Frequency Upconversion

    Full text link
    The ability to transduce non-classical states of light from one wavelength to another is a requirement for integrating disparate quantum systems that take advantage of telecommunications-band photons for optical fiber transmission of quantum information and near-visible, stationary systems for manipulation and storage. In addition, transducing a single-photon source at 1.3 {\mu}m to visible wavelengths for detection would be integral to linear optical quantum computation due to the challenges of detection in the near-infrared. Recently, transduction at single-photon power levels has been accomplished through frequency upconversion, but it has yet to be demonstrated for a true single-photon source. Here, we transduce the triggered single-photon emission of a semiconductor quantum dot at 1.3 {\mu}m to 710 nm with a total detection (internal conversion) efficiency of 21% (75%). We demonstrate that the 710 nm signal maintains the quantum character of the 1.3 {\mu}m signal, yielding a photon anti-bunched second-order intensity correlation, g^(2)(t), that shows the optical field is composed of single photons with g^(2)(0) = 0.165 < 0.5.Comment: 7 pages, 4 figure

    Effect of parasympathetic stimulation on brain activity during appraisal of fearful expressions

    Get PDF
    Autonomic nervous system activity is an important component of human emotion. Mental processes influence bodily physiology, which in turn feeds back to influence thoughts and feelings. Afferent cardiovascular signals from arterial baroreceptors in the carotid sinuses are processed within the brain and contribute to this two-way communication with the body. These carotid baroreceptors can be stimulated non-invasively by externally applying focal negative pressure bilaterally to the neck. In an experiment combining functional neuroimaging (fMRI) with carotid stimulation in healthy participants, we tested the hypothesis that manipulating afferent cardiovascular signals alters the central processing of emotional information (fearful and neutral facial expressions). Carotid stimulation, compared with sham stimulation, broadly attenuated activity across cortical and brainstem regions. Modulation of emotional processing was apparent as a significant expression-by-stimulation interaction within left amygdala, where responses during appraisal of fearful faces were selectively reduced by carotid stimulation. Moreover, activity reductions within insula, amygdala, and hippocampus correlated with the degree of stimulation-evoked change in the explicit emotional ratings of fearful faces. Across participants, individual differences in autonomic state (heart rate variability, a proxy measure of autonomic balance toward parasympathetic activity) predicted the extent to which carotid stimulation influenced neural (amygdala) responses during appraisal and subjective rating of fearful faces. Together our results provide mechanistic insight into the visceral component of emotion by identifying the neural substrates mediating cardiovascular influences on the processing of fear signals, potentially implicating central baroreflex mechanisms for anxiolytic treatment targets

    A defined mechanistic correlate of protection against Plasmodium falciparum malaria in non-human primates.

    Get PDF
    Malaria vaccine design and prioritization has been hindered by the lack of a mechanistic correlate of protection. We previously demonstrated a strong association between protection and merozoite-neutralizing antibody responses following vaccination of non-human primates against Plasmodium falciparum reticulocyte binding protein homolog 5 (PfRH5). Here, we test the mechanism of protection. Using mutant human IgG1 Fc regions engineered not to engage complement or FcR-dependent effector mechanisms, we produce merozoite-neutralizing and non-neutralizing anti-PfRH5 chimeric monoclonal antibodies (mAbs) and perform a passive transfer-P. falciparum challenge study in Aotus nancymaae monkeys. At the highest dose tested, 6/6 animals given the neutralizing PfRH5-binding mAb c2AC7 survive the challenge without treatment, compared to 0/6 animals given non-neutralizing PfRH5-binding mAb c4BA7 and 0/6 animals given an isotype control mAb. Our results address the controversy regarding whether merozoite-neutralizing antibody can cause protection against P. falciparum blood-stage infections, and highlight the quantitative challenge of achieving such protection

    A Model for the Detection of Moving Targets in Visual Clutter Inspired by Insect Physiology

    Get PDF
    We present a computational model for target discrimination based on intracellular recordings from neurons in the fly visual system. Determining how insects detect and track small moving features, often against cluttered moving backgrounds, is an intriguing challenge, both from a physiological and a computational perspective. Previous research has characterized higher-order neurons within the fly brain, known as ‘small target motion detectors’ (STMD), that respond robustly to moving features, even when the velocity of the target is matched to the background (i.e. with no relative motion cues). We recorded from intermediate-order neurons in the fly visual system that are well suited as a component along the target detection pathway. This full-wave rectifying, transient cell (RTC) reveals independent adaptation to luminance changes of opposite signs (suggesting separate ON and OFF channels) and fast adaptive temporal mechanisms, similar to other cell types previously described. From this physiological data we have created a numerical model for target discrimination. This model includes nonlinear filtering based on the fly optics, the photoreceptors, the 1st order interneurons (Large Monopolar Cells), and the newly derived parameters for the RTC. We show that our RTC-based target detection model is well matched to properties described for the STMDs, such as contrast sensitivity, height tuning and velocity tuning. The model output shows that the spatiotemporal profile of small targets is sufficiently rare within natural scene imagery to allow our highly nonlinear ‘matched filter’ to successfully detect most targets from the background. Importantly, this model can explain this type of feature discrimination without the need for relative motion cues

    Modeling visual-based pitch, lift and speed control strategies in hoverflies

    Get PDF
    <div><p>To avoid crashing onto the floor, a free falling fly needs to trigger its wingbeats quickly and control the orientation of its thrust accurately and swiftly to stabilize its pitch and hence its speed. Behavioural data have suggested that the vertical optic flow produced by the fall and crossing the visual field plays a key role in this anti-crash response. Free fall behavior analyses have also suggested that flying insect may not rely on graviception to stabilize their flight. Based on these two assumptions, we have developed a model which accounts for hoverflies´ position and pitch orientation recorded in 3D with a fast stereo camera during experimental free falls. Our dynamic model shows that optic flow-based control combined with closed-loop control of the pitch suffice to stabilize the flight properly. In addition, our model sheds a new light on the visual-based feedback control of fly´s pitch, lift and thrust. Since graviceptive cues are possibly not used by flying insects, the use of a vertical reference to control the pitch is discussed, based on the results obtained on a complete dynamic model of a virtual fly falling in a textured corridor. This model would provide a useful tool for understanding more clearly how insects may or not estimate their absolute attitude.</p></div

    Network adaptation improves temporal representation of naturalistic stimuli in drosophila eye: II Mechanisms

    Get PDF
    Retinal networks must adapt constantly to best present the ever changing visual world to the brain. Here we test the hypothesis that adaptation is a result of different mechanisms at several synaptic connections within the network. In a companion paper (Part I), we showed that adaptation in the photoreceptors (R1-R6) and large monopolar cells (LMC) of the Drosophila eye improves sensitivity to under-represented signals in seconds by enhancing both the amplitude and frequency distribution of LMCs' voltage responses to repeated naturalistic contrast series. In this paper, we show that such adaptation needs both the light-mediated conductance and feedback-mediated synaptic conductance. A faulty feedforward pathway in histamine receptor mutant flies speeds up the LMC output, mimicking extreme light adaptation. A faulty feedback pathway from L2 LMCs to photoreceptors slows down the LMC output, mimicking dark adaptation. These results underline the importance of network adaptation for efficient coding, and as a mechanism for selectively regulating the size and speed of signals in neurons. We suggest that concert action of many different mechanisms and neural connections are responsible for adaptation to visual stimuli. Further, our results demonstrate the need for detailed circuit reconstructions like that of the Drosophila lamina, to understand how networks process information

    New signatures of the spin gap in quantum point contacts.

    Get PDF
    One dimensional semiconductor systems with strong spin-orbit interaction are both of fundamental interest and have potential applications to topological quantum computing. Applying a magnetic field can open a spin gap, a pre-requisite for Majorana zero modes. The spin gap is predicted to manifest as a field dependent dip on the first 1D conductance plateau. However, disorder and interaction effects make identifying spin gap signatures challenging. Here we study experimentally and numerically the 1D channel in a series of low disorder p-type GaAs quantum point contacts, where spin-orbit and hole-hole interactions are strong. We demonstrate an alternative signature for probing spin gaps, which is insensitive to disorder, based on the linear and non-linear response to the orientation of the applied magnetic field, and extract a spin-orbit gap ΔE ≈ 500 μeV. This approach could enable one-dimensional hole systems to be developed as a scalable and reproducible platform for topological quantum applications

    Robust Models for Optic Flow Coding in Natural Scenes Inspired by Insect Biology

    Get PDF
    The extraction of accurate self-motion information from the visual world is a difficult problem that has been solved very efficiently by biological organisms utilizing non-linear processing. Previous bio-inspired models for motion detection based on a correlation mechanism have been dogged by issues that arise from their sensitivity to undesired properties of the image, such as contrast, which vary widely between images. Here we present a model with multiple levels of non-linear dynamic adaptive components based directly on the known or suspected responses of neurons within the visual motion pathway of the fly brain. By testing the model under realistic high-dynamic range conditions we show that the addition of these elements makes the motion detection model robust across a large variety of images, velocities and accelerations. Furthermore the performance of the entire system is more than the incremental improvements offered by the individual components, indicating beneficial non-linear interactions between processing stages. The algorithms underlying the model can be implemented in either digital or analog hardware, including neuromorphic analog VLSI, but defy an analytical solution due to their dynamic non-linear operation. The successful application of this algorithm has applications in the development of miniature autonomous systems in defense and civilian roles, including robotics, miniature unmanned aerial vehicles and collision avoidance sensors
    • …
    corecore