36 research outputs found
NOX Enzymes and Pulmonary Disease
Abstract The primary function of the lung is to facilitate the transfer of molecular oxygen (O2; dioxygen) from the atmosphere to the systemic circulation. In addition to its essential role in aerobic metabolism, O2 serves as the physiologic terminal acceptor of electron transfer catalyzed by the NADPH oxidase (NOX) family of oxidoreductases. The evolution of the lungs and circulatory systems in vertebrates was accompanied by increasing diversification of NOX family enzymes, suggesting adaptive roles for NOX-derived reactive oxygen species in normal physiology. However, this adaptation may paradoxically carry detrimental consequences in the setting of overwhelming/persistent environmental stressors, both infectious and noninfectious, and during the process of aging. Here, we review current understanding of NOX enzymes in normal lung physiology and their pathophysiologic roles in a number of pulmonary diseases, including lung infections, acute lung injury, pulmonary arterial hypertension, obstructive lung disorders, fibrotic lung disease, and lung cancer. Antioxid. Redox Signal. 11, 2505-2516.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/78108/1/ars.2009.2599.pd
Role of Nox4 and Nox2 in Hyperoxia-Induced Reactive Oxygen Species Generation and Migration of Human Lung Endothelial Cells
Abstract In vascular endothelium, the major research focus has been on reactive oxygen species (ROS) derived from Nox2. The role of Nox4 in endothelial signal transduction, ROS production, and cytoskeletal reorganization is not well defined. In this study, we show that human pulmonary artery endothelial cells (HPAECs) and human lung microvascular endothelial cells (HLMVECs) express higher levels of Nox4 and p22phox compared to Nox1, Nox2, Nox3, or Nox5. Immunofluorescence microscopy and Western blot analysis revealed that Nox4 and p22phox, but not Nox2 or p47phox, are localized in nuclei of HPAECs. Further, knockdown of Nox4 with siRNA decreased Nox4 nuclear expression significantly. Exposure of HPAECs to hyperoxia (3-24h) enhanced mRNA and protein expression of Nox4, and Nox4 siRNA decreased hyperoxia-induced ROS production. Interestingly, Nox4 or Nox2 knockdown with siRNA upregulated the mRNA and protein expression of the other, suggesting activation of compensatory mechanisms. A similar upregulation of Nox4 mRNA was observed in Nox2 2/ko mice. Downregulation of Nox4, or pretreatment with N-acetylcysteine, attenuated hyperoxia-induced cell migration and capillary tube formation, suggesting that ROS generated by Nox4 regulate endothelial cell motility. These results indicate that Nox4 and Nox2 play a physiological role in hyperoxia-induced ROS production and migration of ECs. Antioxid. Redox Signal. 11, 747-764.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/78121/1/ars.2008.2203.pd
Coronin 1B Regulates S1P-Induced Human Lung Endothelial Cell Chemotaxis: Role of PLD2, Protein Kinase C and Rac1 Signal Transduction
Coronins are a highly conserved family of actin binding proteins that regulate actin-dependent processes such as cell motility and endocytosis. We found that treatment of human pulmonary artery endothelial cells (HPAECs) with the bioactive lipid, sphingosine-1-phosphate (S1P) rapidly stimulates coronin 1B translocation to lamellipodia at the cell leading edge, which is required for S1P-induced chemotaxis. Further, S1P-induced chemotaxis of HPAECs was attenuated by pretreatment with small interfering RNA (siRNA) targeting coronin 1B (∼36%), PLD2 (∼45%) or Rac1 (∼50%) compared to scrambled siRNA controls. Down regulation PLD2 expression by siRNA also attenuated S1P-induced coronin 1B translocation to the leading edge of the cell periphery while PLD1 silencing had no effect. Also, S1P-induced coronin 1B redistribution to cell periphery and chemotaxis was attenuated by inhibition of Rac1 and over-expression of dominant negative PKC δ, ε and ζ isoforms in HPAECs. These results demonstrate that S1P activation of PLD2, PKC and Rac1 is part of the signaling cascade that regulates coronin 1B translocation to the cell periphery and the ensuing cell chemotaxis
FoxM1 mediates the progenitor function of type II epithelial cells in repairing alveolar injury induced by Pseudomonas aeruginosa
Mice lacking FoxM1 specifically in progenitor-like type II alveolar epithelial cells exhibit defective alveolar barrier repair after microbe-induced lung injury
Redox regulation of Nox proteins
The generation of reactive oxygen species (ROS) plays a major role in endothelial signaling and function. Of the several potential sources of ROS in the vasculature, the endothelial NADPH Oxidase (Nox) family of proteins, Nox1, Nox2, Nox4 and Nox5, are major contributors of ROS. Excess generation of ROS contributes to the development and progression of vascular disease. While hyperoxia stimulates ROS production through Nox proteins, hypoxia appears to involve mitochondrial electron transport in the generation of superoxide. ROS generated from Nox proteins and mitochondria are important for oxygen sensing mechanisms. Physiological concentrations of ROS function as signaling molecule in the endothelium; however, excess ROS production leads to pathological disorders like inflammation, atherosclerosis, and lung injury. Regulation of Nox proteins is unclear; however, antioxidants, MAP Kinases, STATs, and Nrf2 regulate Nox under normal physiological and pathological conditions. Studies related to redox regulation of Nox should provide a better understanding of ROS and its role in the pathophysiology of vascular diseases
Endothelial cell barrier protection by simvastatin: GTPase regulation and NADPH oxidase inhibition
The statins, hydroxy-3-methylglutaryl-CoA reductase inhibitors that lower serum cholesterol, exhibit myriad clinical benefits, including enhanced vascular integrity. One potential mechanism underlying increased endothelial cell (EC) barrier function is inhibition of geranylgeranylation, a covalent modification enabling translocation of the small GTPases Rho and Rac to the cell membrane. While RhoA inhibition attenuates actin stress fiber formation and promotes EC barrier function, Rac1 inhibition at the cell membrane potentially prevents activation of NADPH oxidase and subsequent generation of superoxides known to induce barrier disruption. We examined the relative regulatory effects of simvastatin on RhoA, Rac1, and NADPH oxidase activities in the context of human pulmonary artery EC barrier protection. Confluent EC treated with simvastatin demonstrated significantly decreased thrombin-induced FITC-dextran permeability, a reflection of vascular integrity, which was linked temporally to simvastatin-mediated actin cytoskeletal rearrangement. Compared with Rho inhibition alone (Y-27632), simvastatin afforded additional protection against thrombin-mediated barrier dysfunction and attenuated LPS-induced EC permeability and superoxide generation. Statin-mediated inhibition of both Rac translocation to the cell membrane and superoxide production were attenuated by geranylgeranyl pyrophosphate (GGPP), indicating that these effects are due to geranylgeranylation inhibition. Finally, thrombin-induced EC permeability was modestly attenuated by reduced Rac1 expression (small interfering RNA), whereas these effects were made more pronounced by simvastatin pretreatment. Together, these data suggest EC barrier protection by simvastatin is due to dual inhibitory effects on RhoA and Rac1 as well as the attenuation of superoxide generation by EC NADPH oxidase and contribute to the molecular mechanistic understanding of the modulation of EC barrier properties by simvastatin
Protein kinase C-epsilon regulates sphingosine-1-phosphate-mediated migration of human lung endothelial cells through activation of phospholipase D2, protein Kinase C-zeta, and Rac1
The signaling pathways by which sphingosine 1-phosphate (S1P) potently stimulates endothelial cell migration and angiogenesis are not yet fully defined. We, therefore, investigated the role of protein kinase C (PKC) isoforms, phospholipase D (PLD), and Rac in S1P-induced migration of human pulmonary artery endothelial cells (HPAECs). S1P-induced migration was sensitive to S1P1 small interfering RNA (siRNA) and pertussis toxin, demonstrating coupling of S1P1 to Gi. Overexpression of dominant negative (dn) PKC-ε or -ζ, but not PKC-α or -δ, blocked S1P-induced migration. Although S1P activated both PLD1 and PLD2, S1P-induced migration was attenuated by knocking down PLD2 or expressing dnPLD2 but not PLD1. Blocking PKC-ε, but not PKC-ζ, activity attenuated S1P-mediated PLD stimulation, demonstrating that PKC-ε, but not PKC-ζ, was upstream of PLD. Transfection of HPAECs with dnRac1 or Rac1 siRNA attenuated S1P-induced migration. Furthermore, transfection with PLD2 siRNA, infection of HPAECs with dnPKC-ζ, or treatment with myristoylated PKC-ζ peptide inhibitor abrogated S1P-induced Rac1 activation. These results establish that S1P signals through S1P1 and Gi to activate PKC-ε and, subsequently, a PLD2-PKC-ζ-Rac1 cascade. Activation of this pathway is necessary to stimulate the migration of lung endothelial cells, a key component of the angiogenic process
Redox regulation of Nox proteins
The generation of reactive oxygen species (ROS) plays a major role in endothelial signaling and function. Of the several potential sources of ROS in the vasculature, the endothelial NADPH Oxidase (Nox) family of proteins, Nox1, Nox2, Nox4 and Nox5, are major contributors of ROS. Excess generation of ROS contributes to the development and progression of vascular disease. While hyperoxia stimulates ROS production through Nox proteins, hypoxia appears to involve mitochondrial electron transport in the generation of superoxide. ROS generated from Nox proteins and mitochondria are important for oxygen sensing mechanisms. Physiological concentrations of ROS function as signaling molecule in the endothelium; however, excess ROS production leads to pathological disorders like inflammation, atherosclerosis, and lung injury. Regulation of Nox proteins is unclear; however, antioxidants, MAP Kinases, STATs, and Nrf2 regulate Nox under normal physiological and pathological conditions. Studies related to redox regulation of Nox should provide a better understanding of ROS and its role in the pathophysiology of vascular diseases