101 research outputs found
Discovery of Radio Outbursts in the Active Nucleus of M81
The low-luminosity active galactic nucleus of M81 has been monitored at
centimeter wavelengths since early 1993 as a by-product of radio programs to
study the radio emission from Supernova 1993J. The extensive data sets reveal
that the nucleus experienced several radio outbursts during the monitoring
period. At 2 and 3.6 cm, the main outburst occurred roughly in the beginning of
1993 September and lasted for approximately three months; at longer
wavelengths, the maximum flux density decreases, and the onset of the burst is
delayed. These characteristics qualitatively resemble the standard model for
adiabatically expanding radio sources, although certain discrepancies between
the observations and the theoretical predictions suggest that the model is too
simplistic. In addition to the large-amplitude, prolonged variations, we also
detected milder changes in the flux density at 3.6 cm and possibly at 6 cm on
short (less than 1 day) timescales. We discuss a possible association between
the radio activity and an optical flare observed during the period that the
nucleus was monitored at radio wavelengths.Comment: To appear in The Astronomical Journal. Latex, 18 pages including
embedded figures and table
The Nature of Composite LINER/HII Galaxies, As Revealed from High-Resolution VLA Observations
A sample of 37 nearby galaxies displaying composite LINER/HII and pure HII
spectra was observed with the VLA in an investigation of the nature of their
weak radio emission. The resulting radio contour maps overlaid on optical
galaxy images are presented here, together with an extensive literature list
and discussion of the individual galaxies. Radio morphological data permit
assessment of the ``classical AGN'' contribution to the global activity
observed in these ``transition'' LINER galaxies. One in five of the latter
objects display clear AGN characteristics: these occur exclusively in
bulge-dominated hosts.Comment: 31 pages, 27 figures, accepted by ApJ
Evidence-based hydro- and balneotherapy in Hungary-a systematic review and meta-analysis
Balneotherapy is appreciated as a traditional treatment modality in medicine. Hungary is rich in thermal mineral waters. Balneotherapy has been in extensive use for centuries and its effects have been studied in detail. Here, we present a systematic review and meta-analysis of clinical trials conducted with Hungarian thermal mineral waters, the findings of which have been published by Hungarian authors in English. The 122 studies identified in different databases include 18 clinical trials. Five of these evaluated the effect of hydro- and balneotherapy on chronic low back pain, four on osteoarthritis of the knee, and two on osteoarthritis of the hand. One of the remaining seven trials evaluated balneotherapy in chronic inflammatory pelvic diseases, while six studies explored its effect on various laboratory parameters. Out of the 18 studies, 9 met the predefined criteria for meta-analysis. The results confirmed the beneficial effect of balneotherapy on pain with weight bearing and at rest in patients with degenerative joint and spinal diseases. A similar effect has been found in chronic pelvic inflammatory disease. The review also revealed that balneotherapy has some beneficial effects on antioxidant status, and on metabolic and inflammatory parameters. Based on the results, we conclude that balneotherapy with Hungarian thermal-mineral waters is an effective remedy for lower back pain, as well as for knee and hand osteoarthritis. © 2013 The Author(s)
JUNO physics and detector
The Jiangmen Underground Neutrino Observatory (JUNO) is a 20 kton liquid scintillator detector in a laboratory at 700-m underground. An excellent energy resolution and a large fiducial volume offer exciting opportunities for addressing many important topics in neutrino and astro-particle physics. With six years of data, the neutrino mass ordering can be determined at a 3-4 sigma significance and the neutrino oscillation parameters sin(2 )theta(12), Delta m(21)(2), and vertical bar Delta m(32)(2)vertical bar can be measured to a precision of 0.6% or better, by detecting reactor antineutrinos from the Taishan and Yangjiang nuclear power plants. With ten years of data, neutrinos from all past core-collapse supernovae could be observed at a 3 sigma significance; a lower limit of the proton lifetime, 8.34 x 10(33) years (90% C.L.), can be set by searching for p -> (nu) over barK(+); detection of solar neutrinos would shed new light on the solar metallicity problem and examine the vacuum-matter transition region. A typical core-collapse supernova at a distance of 10 kpc would lead to similar to 5000 inverse-beta-decay events and similar to 2000 (300) all-flavor neutrino-proton (electron) elastic scattering events in JUNO. Geo-neutrinos can be detected with a rate of similar to 400 events per year. Construction of the detector is very challenging. In this review, we summarize the final design of the JUNO detector and the key R&D achievements, following the Conceptual Design Report in 2015 (Djurcic et al., 2015). All 20-inch PMTS have been procured and tested. The average photon detection efficiency is 28.9% for the 15,000 MCP PMTS and 28.1% for the 5000 dynode PMTS, higher than the JUNO requirement of 27%. Together with the >20 m attenuation length of the liquid scintillator achieved in a 20-ton pilot purification test and the >96% transparency of the acrylic panel, we expect a yield of 1345 photoelectrons per MeV and an effective relative energy resolution of 3.02%/root E(MeV) in simulations (Abusleme et al., 2021). To maintain the high performance, the underwater electronics is designed to have a loss rate <0.5% in six years. With degassing membranes and a micro-bubble system, the radon concentration in the 35 kton water pool could be lowered to <10 mBq/m(3). Acrylic panels of radiopurity <0.5 ppt U/Th for the 35.4-m diameter liquid scintillator vessel are produced with a dedicated production line. The 20 kton liquid scintillator will be purified onsite with Alumina filtration, distillation, water extraction, and gas stripping. Together with other low background handling, singles in the fiducial volume can be controlled to similar to 10 Hz. The JUNO experiment also features a double calorimeter system with 25,600 3-inch PMTS, a liquid scintillator testing facility OSIRIS, and a near detector TAO. (JUNO Collaboration
Model-independent Approach of the JUNO 8B Solar Neutrino Program
The physics potential of detecting 8B solar neutrinos will be exploited at the Jiangmen Underground Neutrino Observatory (JUNO), in a model-independent manner by using three distinct channels of the charged current (CC), neutral current (NC), and elastic scattering (ES) interactions. Due to the largest-ever mass of 13C nuclei in the liquid scintillator detectors and the expected low background level, 8B solar neutrinos are observable in the CC and NC interactions on 13C for the first time. By virtue of optimized event selections and muon veto strategies, backgrounds from the accidental coincidence, muon-induced isotopes, and external backgrounds can be greatly suppressed. Excellent signal-to-background ratios can be achieved in the CC, NC, and ES channels to guarantee the observation of the 8B solar neutrinos. From the sensitivity studies performed in this work, we show that JUNO, with 10 yr of data, can reach the 1σ precision levels of 5%, 8%, and 20% for the 8B neutrino flux, sin 2 θ 12 , and Δ m 21 2 , respectively. Probing the details of both solar physics and neutrino physics would be unique and helpful. In addition, when combined with the Sudbury Neutrino Observatory measurement, the world's best precision of 3% is expected for the measurement of the 8B neutrino flux
Physiological response of the retinal pigmented epithelium to 3-ns pulse laser application, in vitro and in vivo
BACKGROUND: To treat healthy retinal pigmented epithelium (RPE) with the 3-ns retinal rejuvenation therapy (2RT) laser and to investigate the subsequent wound-healing response of these cells. METHODS: Primary rat RPE cells were treated with the 2RT laser at a range of energy settings. Treated cells were fixed up to 7 days post-irradiation and assessed for expression of proteins associated with wound-healing. For in vivo treatments, eyes of Dark Agouti rats were exposed to laser and tissues collected up to 7 days post-irradiation. Isolated wholemount RPE preparations were examined for structural and protein expression changes. RESULTS: Cultured RPE cells were ablated by 2RT laser in an energy-dependent manner. In all cases, the RPE cell layer repopulated completely within 7 days. Replenishment of RPE cells was associated with expression of the heat shock protein, Hsp27, the intermediate filament proteins, vimentin and nestin, and the cell cycle-associated protein, cyclin D1. Cellular tight junctions were lost in lased regions but re-expressed when cell replenishment was complete. In vivo, 2RT treatment gave rise to both an energy-dependent localised denudation of the RPE and the subsequent repopulation of lesion sites. Cell replenishment was associated with the increased expression of cyclin D1, vimentin and the heat shock proteins Hsp27 and αB-crystallin. CONCLUSIONS: The 2RT laser was able to target the RPE both in vitro and in vivo, causing debridement of the cells and the consequent stimulation of a wound-healing response leading to layer reformation.John P. M. Wood, Marzieh Tahmasebi, Robert J. Casson, Malcolm Plunkett, Glyn Chidlo
Decoding the historical tale: COVID-19 impact on haematological malignancy patients-EPICOVIDEHA insights from 2020 to 2022
The COVID-19 pandemic heightened risks for individuals with hematological malignancies due to compromised immune systems, leading to more severe outcomes and increased mortality. While interventions like vaccines, targeted antivirals, and monoclonal antibodies have been effective for the general population, their benefits for these patients may not be as pronounced.Peer reviewe
Luminosity, Energy and Polarization Studies for the Linear Collider: Comparing e+e- and e-e- for NLC and TESLA
We present results from luminosity, energy and polarization studies at a future Linear Collider. We compare e+e- and e-e- modes of operation and consider both NLC and TESLA beam parameter specifications at a center-of-mass energy of 500 GeV. Realistic colliding beam distributions are used, which include dynamic effects of the beam transport from the Damping Rings to the Interaction Point. Beam-beam deflections scans and their impact for beam-based feedbacks are considered. A transverse kink instability is studied, including its impact on determining the luminosity-weighted center-of-mass energy. Polarimetry in the extraction line from the IP is presented, including results on beam distributions at the Compton IP and at the Compton detector
- …
