113 research outputs found

    Interstellar Dust in the Solar System: Model versus In-Situ Spacecraft Data

    Full text link
    In the early 1990s, contemporary interstellar dust penetrating deep into the heliosphere was identified with the in-situ dust detector on board the Ulysses spacecraft. Later on, interstellar dust was also identified in the data sets measured with dust instruments on board Galileo, Cassini and Helios. Ulysses monitored the interstellar dust stream at high ecliptic latitudes for about 16 years. The three other spacecraft data sets were obtained in the ecliptic plane and cover much shorter time intervals.We compare in-situ interstellar dust measurements obtained with these four spacecrafts, published in the literature, with predictions of a state-of-the-art model for the dynamics of interstellar dust in the inner solar system (Interplanetary Meteoroid environment for EXploration, IMEX), in order to test the reliability of the model predictions. Micrometer and sub-micrometer sized dust particles are subject to solar gravity and radiation pressure as well as to the Lorentz force on a charged dust particle moving through the Interplanetary Magnetic Field. The IMEX model was calibrated with the Ulysses interstellar dust measurements and includes these relevant forces. We study the time-resolved flux and mass distribution of interstellar dust in the solar system. The IMEX model agrees with the spacecraft measurements within a factor of 2 to 3, also for time intervals and spatial regions not covered by the original model calibration with the Ulysses data set. It usually underestimates the dust fluxes measured by the space missions which were not used for the model calibration, i.e. Galileo, Cassini and Helios. IMEX is a unique time-dependent model for the prediction of interstellar dust fluxes and mass distributions for the inner and outer solar system. The model is suited to study dust detection conditions for past and future space missions.Comment: 24 pages, 7 figures, 1 tabl

    Effects of neighbouring planets on the formation of resonant dust rings in the inner Solar System

    Full text link
    Context. Findings by the Helios and STEREO mission have indicated the presence of a resonant circumsolar ring of dust associated with Venus. Attempts to model this phenomenon as an analogue to the resonant ring of Earth - as a result of migrating dust trapped in external mean-motion resonances (MMRs) - have so far been unable to reproduce the observed dust feature. Other theories of origin have recently been put forward. However, the reason for the low trapping efficiency of Venus's external MMRs remains unclear. Aims. Here we look into the nature of the dust trapping resonant phenomena that arise from the multi-planet configuration of the inner Solar System, aiming to add to the existent understanding of resonant dust rings in single planet systems. Methods. We numerically modelled resonant dust features associated with the inner planets and specifically looked into the dependency of these structures and the trapping efficiency of particular resonances on the configuration of planets. Results. Besides Mercury showing no resonant interaction with the migrating dust cloud, we find Venus, Earth, and Mars to considerably interfere with each other's resonances, influencing their ability to form circumsolar rings. We find that the single most important reason for the weakness of Venus's external MMR ring is the perturbing influence of its outer neighbour - Earth. In addition, we find Mercury and Mars to produce crescent-shaped density features, caused by a directed apsidal precession occurring in particles traversing their orbital region

    Counter Data of the Cosmic Dust Analyzer aboard the Cassini spacecraft and possible "dust clouds" at Saturn

    Full text link
    We present the impact rates of dust particles recorded by the Cosmic Dust Analyzer (CDA) aboard the Cassini spacecraft. The "dust counters" evaluate the quality of an impact and give rise to the apparent density of dust particles in space. The raw data is pre-selected and refined to a new structure that serves to a better investigation of densities, flows, and properties of interplanetary dust grains. Our data is corrected for the dead time of the instrument and corresponds to an assumed Kepler orbit (pointing of the sensitive area). The processed data are published on the website for the Magnetosphere and Plasma Science (MAPSview), where it can be correlated with other Cassini instruments. A sample is presented for the Titan flyby on DOY 250/2006. We find that the dust density peaks at two times, at least, in a void region between Titan and Rhea. Such features may point to extended clouds of small particles drifting slowly in space. These density clouds seem to be stable for as long as several months or few years before dispersing.Comment: 16 pages, 5 figure

    Heliospheric modulation of the interstellar dust flow on to Earth

    Full text link
    Aims. Based on measurements by the Ulysses spacecraft and high-resolution modelling of the motion of interstellar dust (ISD) through the heliosphere we predict the ISD flow in the inner planetary system and on to the Earth. This is the third paper in a series of three about the flow and filtering of the ISD. Methods. Micrometer- and sub-micrometer-sized dust particles are subject to solar gravity and radiation pressure as well as to interactions with the interplanetary magnetic field that result in a complex size-dependent flow pattern of ISD in the planetary system. With high-resolution dynamical modelling we study the time-resolved flux and mass distribution of ISD and the requirements for detection of ISD near the Earth. Results. Along the Earth orbit the density, speed, and flow direction of ISD depend strongly on the Earth's position and the size of the interstellar grains. A broad maximum of the ISD flux (2x10^{-4}/m^2/s of particles with radii >~0.3\mu m) occurs in March when the Earth moves against the ISD flow. During this time period the relative speed with respect to the Earth is highest (~60 km/s), whereas in September when the Earth moves with the ISD flow, both the flux and the speed are lowest (<~10 km/s). The mean ISD mass flow on to the Earth is ~100 kg/year with the highest flux of ~3.5kg/day occurring for about 2 weeks close to the end of the year when the Earth passes near the narrow gravitational focus region downstream from the Sun. The phase of the 22-year solar wind cycle has a strong effect on the number density and flow of sub-micrometer-sized ISD particles. During the years of maximum electromagnetic focussing (year 2031 +/- 3) there is a chance that ISD particles with sizes even below 0.1\mu m can reach the Earth. Conclusions. We demonstrate that ISD can be effectively detected, analysed, and collected by space probes at 1 AU distance from the Sun.Comment: 17 pages, 17 figure

    Micrometeoroid infall onto Saturn’s rings constrains their age to no more than a few hundred million years

    Get PDF
    There is ongoing debate as to whether Saturn’s main rings are relatively young or ancient— having been formed shortly after Saturn or during the Late Heavy Bombardment. The rings are mostly water-ice but are polluted by non-icy material with a volume fraction ranging from ∼0.1 to 2%. Continuous bombardment by micrometeoroids exogenic to the Saturnian system is a source of this non-icy material. Knowledge of the incoming mass flux of these pollutants allows estimation of the rings’ exposure time, providing a limit on their age. Here we report the final measurements by Cassini’s Cosmic Dust Analyzer of the micrometeoroid flux into the Saturnian system. Several populations are present, but the flux is dominated by low-relative velocity objects such as from the Kuiper belt. We find a mass flux between 6.9 · 10−17 and 2.7 · 10−16 kg m−2s−1 from which we infer a ring exposure time ≲100 to 400 million years in support of recent ring formation scenarios

    Techniques for Galactic Dust Measurements in the Heliosphere

    Get PDF
    Galactic interstellar dust (ISD) is the major ingredient in planetary formation. However, information on this important material has been extremely limited. Recently the Ulysses dust detector has identified and measured interstellar dust outside 1.8~AU from the Sun at ecliptic latitudes above 5050^{\circ}. Inside this distance it could not reliably distinguish interstellar from interplanetary dust. Modeling the Ulysses data suggests that up to 30 % of dust flux with masses above 1016kg10^{-16}\rm kg at 1~AU is of interstellar origin. From the Hiten satellite in high eccentric orbit about the Earth there are indications that ISD indeed reaches the Earth's orbit. Two new missions carrying dust detectors, Cassini and Stardust, will greatly increase our observational knowledge. In this paper we briefly review instruments used on these missions and compare their capabilities. The Stardust mission [{\em Brownlee et al.}, 1996] will analyze the local interstellar dust population by an in-situ chemical analyzer and collect ISD between 2 and 3~AU from the Sun. The dust analyzer on the Cassini mission will determine the interstellar dust flux outside Venus' orbit and will provide also some compositional information. Techniques to identify the ISD flux levels at 1~AU are described that can quantify the interstellar dust flux in high-Earth orbit (outside the debris belts) and provide chemical composition information of galactic dust.Comment: Accepted for Journal of Geophysical Research, 6 figures, Late

    Analysis of the technical biases of meteor video cameras used in the CILBO system

    Get PDF
    In this paper, we analyse the technical biases of two intensified video cameras, ICC7 and ICC9, of the double-station meteor camera system CILBO (Canary Island Long-Baseline Observatory). This is done to thoroughly understand the effects of the camera systems on the scientific data analysis. We expect a number of errors or biases that come from the system: instrumental errors, algorithmic errors and statistical errors. We analyse different observational properties, in particular the detected meteor magnitudes, apparent velocities, estimated goodness-of-fit of the astrometric measurements with respect to a great circle and the distortion of the camera. We find that, due to a loss of sensitivity towards the edges, the cameras detect only about 55 % of the meteors it could detect if it had a constant sensitivity. This detection efficiency is a function of the apparent meteor velocity. We analyse the optical distortion of the system and the "goodness-of-fit" of individual meteor position measurements relative to a fitted great circle. The astrometric error is dominated by uncertainties in the measurement of the meteor attributed to blooming, distortion of the meteor image and the development of a wake for some meteors. The distortion of the video images can be neglected. We compare the results of the two identical camera systems and find systematic differences. For example, the peak magnitude distribution for ICC9 is shifted by about 0.2–0.4 mag towards fainter magnitudes. This can be explained by the different pointing directions of the cameras. Since both cameras monitor the same volume in the atmosphere roughly between the two islands of Tenerife and La Palma, one camera (ICC7) points towards the west, the other one (ICC9) to the east. In particular, in the morning hours the apex source is close to the field-of-view of ICC9. Thus, these meteors appear slower, increasing the dwell time on a pixel. This is favourable for the detection of a meteor of a given magnitude

    Helios spacecraft data revisited: Detection of cometary meteoroid trails by in-situ dust impacts

    Full text link
    Cometary meteoroid trails exist in the vicinity of comets, forming fine structure of the interplanetary dust cloud. The trails consist predominantly of cometary particles with sizes of approximately 0.1 mm to 1 cm which are ejected at low speeds and remain very close to the comet orbit for several revolutions around the Sun. When re-analysing the Helios dust data measured in the 1970s, Altobelli et al. (2006) recognized a clustering of seven impacts, detected in a very narrow region of space at a true anomaly angle of 135 deg, which the authors considered as potential cometary trail particles. We re-analyse these candidate cometary trail particles to investigate the possibility that some or all of them indeed originate from cometary trails and we constrain their source comets. The Interplanetary Meteoroid Environment for eXploration (IMEX) dust streams in space model is a new universal model for cometary meteoroid streams in the inner solar system, developed by Soja et al. (2015). Using IMEX we study cometary trail traverses by Helios. During ten revolutions around the Sun, and in the narrow region of space where Helios detected the candidate dust particles, the spacecraft repeatedly traversed the trails of comets 45P/Honda-Mrkos-Pajduvsakova and 72P/Denning-Fujikawa. Based on the detection times and particle impact directions, four detected particles are compatible with an origin from these two comets. We find a dust spatial density in these trails of about 10^-8 to 10^-7 m^-3. The in-situ detection and analysis of meteoroid trail particles which can be traced back to their source bodies by spacecraft-based dust analysers opens a new window to remote compositional analysis of comets and asteroids without the necessity to fly a spacecraft to or even land on those celestial bodies. This provides new science opportunities for future missions like Destiny+, Europa Clipper and IMAP.Comment: 13 pages, 9 Figures, 2 Tables, accepted for pubication by Astronomy and Astrophysic

    Modelling DESTINY+ interplanetary and interstellar dust measurements en route to the active asteroid (3200) Phaethon

    Get PDF
    The JAXA/ISAS spacecraft DESTINY+^+ will be launched to the active asteroid (3200) Phaethon in 2022. Among the proposed core payload is the DESTINY+ Dust Analyzer (DDA) which is an upgrade of the Cosmic Dust Analyzer flown on the Cassini spacecraft to Saturn (Srama et al. 2011). We use two up-to-date computer models, the ESA Interplanetary Meteoroid Engineering Model (IMEM, Dikarev et al. 2005), and the interstellar dust module of the Interplanetary Meteoroid environment for EXploration model (IMEX; Sterken2013 et al., Strub et al. 2019) to study the detection conditions and fluences of interplanetary and interstellar dust with DDA. Our results show that a statistically significant number of interplanetary and interstellar dust particles will be detectable with DDA during the 4-years interplanetary cruise of DESTINY+. The particle impact direction and speed can be used to descriminate between interstellar and interplanetary particles and likely also to distinguish between cometary and asteroidal particles.Comment: 40 pages, 18 Figures, accepted for Planetary and Space Scienc

    “Dogged” Search of Fresh Nakhla Surfaces Reveals New Alteration Textures

    Get PDF
    Special Issue: 74th Annual Meeting of the Meteoritical Society, August 8-12, 2011, London, U.K.International audienceCarbonaceous chondrites are considered as amongst the most primitive Solar System samples available. One of their primitive characteristics is their enrichment in volatile elements.This includes hydrogen, which is present in hydrated and hydroxylated minerals. More precisely, the mineralogy is expected to be dominated by phyllosilicates in the case of CM chondrites, and by Montmorillonite type clays in the case of CI. Here, in order to characterize and quantify the abundance of lowtemperature minerals in carbonaceous chondrites, we performed thermogravimetric analysis of matrix fragments of Tagish Lake, Murchison and Orgueil
    corecore