630 research outputs found
Diastereoselective reduction of protein-bound methionine sulfoxide by methionine sulfoxide reductase
AbstractMethionine sulfoxide (MetSO) in calmodulin (CaM) was previously shown to be a substrate for bovine liver peptide methionine sulfoxide reductase (pMSR, EC 1.8.4.6), which can partially recover protein structure and function of oxidized CaM in vitro. Here, we report for the first time that pMSR selectively reduces the D-sulfoxide diastereomer of CaM-bound L-MetSO (L-Met-D-SO). After exhaustive reduction by pMSR, the ratio of L-Met-D-SO to L-Met-L-SO decreased to about 1:25 for hydrogen peroxide-oxidized CaM, and to about 1:10 for free MetSO. The accumulation of MetSO upon oxidative stress and aging in vivo may be related to incomplete, diastereoselective, repair by pMSR
Recommended from our members
Fringe-free, Background-free, Collinear Third Harmonic Generation FROG Measurements for Multiphoton Microscopy
Collinear pulse measurement tools useful at the full numerical aperture (NA) of multiphoton microscope objectives are a necessity for a quantitative characterization of the femtosecond pulses focused by these systems. In this letter, we demonstrate a simple new technique, for characterizing the pulse at the focus in a multiphoton microscope. This technique, a background-free, fringe-free, form of frequency-resolved optical gating, uses the third harmonic signal generated from a glass coverslip. Here it is used to characterize 100 fs pulses (typical values for a multiphoton microscope) at the focus of a 0.65 NA objective
Recommended from our members
Dynamic Stabilization of Expressed Proteins in Engineered Diatom Biosilica Matrices
Self-assembly of recombinant proteins within the biosilica of living diatoms represents a means to construct functional materials in a reproducible and scalable manner that will enable applications that harness the inherent specificities of proteins to sense and respond to environmental cues. Here we describe the use of a silaffin-derived lysine-rich 39-amino-acid targeting sequence (Sil3[subscript]T8) that directs a single chain fragment variable (scFv) antibody or an enhanced green fluorescent protein (EGFP) to assemble within the biosilica frustule, resulting in abundance of >200 000 proteins per frustule. Using either a fluorescent ligand bound to the scFv or the intrinsic fluorescence of EGFP, we monitored protein conformational dynamics, accessibility to external quenchers, binding affinity, and conformational stability. Like proteins in solution, proteins within isolated frustules undergo isotropic rotational motion, but with 2-fold increases in rotational correlation times that are indicative of weak macromolecular associations within the biosilica. Solvent accessibilities and high-affinity (pM) binding are comparable to those in solution. In contrast to solution conditions, scFv antibodies within the biosilica matrix retain their binding affinity in the presence of chaotropic agents (i.e., 8 M urea). Together, these results argue that dramatic increases in protein conformational stability within the biosilica matrices arise through molecular crowding, acting to retain native protein folds and associated functionality with the potential to allow the utility of engineered proteins under a range of harsh environmental conditions associated with environmental sensing and industrial catalytic transformations
ICON 2019: International Scientific Tendinopathy Symposium Consensus: Clinical Terminology
© Author(s) (or their employer(s)) 2019. No commercial re-use. See rights and permissions. Published by BMJ.Background Persistent tendon pain that impairs function has inconsistent medical terms that can influence choice of treatment.1 When a person is told they have tendinopathy by clinician A or tendinitis by clinician B, they might feel confused or be alarmed at receiving what they might perceive as two different diagnoses. This may lead to loss of confidence in their health professional and likely adds to uncertainty if they were to search for information about their condition. Clear and uniform terminology also assists inter-professional communication. Inconsistency in terminology for painful tendon disorders is a problem at numerous anatomical sites. Historically, the term ‘tendinitis’ was first used to describe tendon pain, thickening and impaired function (online supplementary figure S1). The term ‘tendinosis’ has also been used in a small number of publications, some of which were very influential.2 3 Subsequently, ‘tendinopathy’ emerged as the most common term for persistent tendon pain.4 5 To our knowledge, experts (clinicians and researchers) or patients have never engaged in a formal process to discuss the terminology we use. We believe that health professionals have not yet agreed on the appropriate terminology for painful tendon conditions.Peer reviewedFinal Accepted Versio
Results on correlations and fluctuations from NA49
The large acceptance and high momentum resolution as well as the significant
particle identification capabilities of the NA49 experiment at the CERN SPS
allow for a broad study of fluctuations and correlations in hadronic
interactions. In the first part recent results on event-by-event charge and p_t
fluctuations are presented. Charge fluctuations in central Pb+Pb reactions are
investigated at three different beam energies (40, 80, and 158 AGeV), while for
the p_t fluctuations the focus is put on the system size dependence at 158
AGeV. In the second part recent results on Bose Einstein correlations of h-h-
pairs in minimum bias Pb+Pb reactions at 40 and 158 AGeV, as well as of K+K+
and K-K- pairs in central Pb+Pb collisions at 158 AGeV are shown. Additionally,
other types of two particle correlations, namely pi p, Lambda p, and Lambda
Lambda correlations, have been measured by the NA49 experiment. Finally,
results on the energy and system size dependence of deuteron coalescence are
discussed.Comment: 10 pages, 12 figures, Presented at Quark Matter 2002, Nantes, France,
Corrected error in Eq.
Lambda production in central Pb+Pb collisions at CERN-SPS energies
In this paper we present recent results from the NA49 experiment for
and hyperons produced in central Pb+Pb collisions at
40, 80 and 158 AGeV. Transverse mass spectra and rapidity distributions
for are shown for all three energies. The shape of the rapidity
distribution becomes flatter with increasing beam energy. The multiplicities at
mid-rapidity as well as the total yields are studied as a function of collision
energy including AGS measurements. The ratio at mid-rapidity and
in 4 has a maximum around 40 AGeV. In addition,
rapidity distributions have been measured at 40 and 80 AGeV, which
allows to study the / ratio.Comment: SQM proceedings. J. Phys. G: Nucl. Part. Phys.: submitte
Bose-Einstein Correlations of Charged Kaons in Central Pb+Pb Collisions at
Bose-Einstein correlations of charged kaons were measured near mid-rapidity
in central Pb+Pb collisions at 158 AGeV by the NA49 experiment at the
CERN SPS. Source radii were extracted using the Yano-Koonin-Podgoretsky and
Bertsch-Pratt parameterizations. The results are compared to published pion
data. The measured dependence for kaons and pions is consistent with
collective transverse expansion of the source and a freeze-out time of about
9.5 .Comment: 14 pages with 7 figures, submitted to Phys. Lett.
Event-by-event fluctuations of the kaon to pion ratio in central Pb+Pb collisions at 158 GeV per Nucleon
We present the first measurement of fluctuations from event to event in the
production of strange particles in collisions of heavy nuclei. The ratio of
charged kaons to charged pions is determined for individual central Pb+Pb
collisions. After accounting for the fluctuations due to detector resolution
and finite number statistics we derive an upper limit on genuine
non-statistical fluctuations, perhaps related to a first or second order QCD
phase transition. Such fluctuations are shown to be very small.Comment: 4 pages, 2 figure
Baryon Stopping and Charged Particle Distributions in Central Pb+Pb Collisions at 158 GeV per Nucleon
Net proton and negative hadron spectra for central \PbPb collisions at 158
GeV per nucleon at the CERN SPS were measured and compared to spectra from
lighter systems. Net baryon distributions were derived from those of net
protons, utilizing model calculations of isospin contributions as well as data
and model calculations of strange baryon distributions. Stopping (rapidity
shift with respect to the beam) and mean transverse momentum \meanpt of net
baryons increase with system size. The rapidity density of negative hadrons
scales with the number of participant nucleons for nuclear collisions, whereas
their \meanpt is independent of system size. The \meanpt dependence upon
particle mass and system size is consistent with larger transverse flow
velocity at midrapidity for \PbPb compared to \SS central collisions.Comment: This version accepted for publication in PRL. 4 pages, 3 figures.
Typos corrected, some paragraphs expanded in response to referee comments, to
better explain details of analysi
Experimental Study of the Shortest Reset Word of Random Automata
In this paper we describe an approach to finding the shortest reset word of a
finite synchronizing automaton by using a SAT solver. We use this approach to
perform an experimental study of the length of the shortest reset word of a
finite synchronizing automaton. The largest automata we considered had 100
states. The results of the experiments allow us to formulate a hypothesis that
the length of the shortest reset word of a random finite automaton with
states and 2 input letters with high probability is sublinear with respect to
and can be estimated as $1.95 n^{0.55}.
- …