6 research outputs found

    Social network centrality predicts dietary decisions in a wild bird population

    Get PDF
    How individuals balance costs and benefits of group living remains central to understanding sociality. In relation to diet, social foraging provides many advantages but also increases competition. Nevertheless, social individuals may offset increased competition by broadening their diet and consuming novel foods. Despite the expected relationships between social behavior and dietary decisions, how sociality shapes individuals’ novel food consumption remains largely untested in natural populations. Here, we use wild great tits to experimentally test how sociality predicts dietary decisions. We show that individuals with more social connections have higher propensity to use novel foods compared to socially peripheral individuals, and this is unrelated to neophobia, observations, and demographic factors. These findings indicate sociable individuals may offset potential costs of competition by foraging more broadly. We discuss how social environments may drive behavioral change in natural populations, and the implications for the causes and consequences of social strategies and dietary decisions

    Recent natural selection causes adaptive evolution of an avian polygenic trait

    Get PDF
    We used extensive data from a long-term study of great tits (Parus major) in the United Kingdom and Netherlands to better understand how genetic signatures of selection translate into variation in fitness and phenotypes. We found that genomic regions under differential selection contained candidate genes for bill morphology and used genetic architecture analyses to confirm that these genes, especially the collagen gene COL4A5, explained variation in bill length. COL4A5 variation was associated with reproductive success, which, combined with spatiotemporal patterns of bill length, suggested ongoing selection for longer bills in the United Kingdom. Last, bill length and COL4A5 variation were associated with usage of feeders, suggesting that longer bills may have evolved in the United Kingdom as a response to supplementary feeding

    The genomics of adaptation to climate in European great tit (Parus major) populations

    No full text
    The recognition that climate change is occurring at an unprecedented rate means that there is increased urgency in understanding how organisms can adapt to a changing environment. Wild great tit (Parus major) populations represent an attractive ecological model system to understand the genomics of climate adaptation. They are widely distributed across Eurasia and they have been documented to respond to climate change. We performed a Bayesian genome-environment analysis, by combining local climate data with single nucleotide polymorphisms genotype data from 20 European populations (broadly spanning the species’ continental range). We found 36 genes putatively linked to adaptation to climate. Following an enrichment analysis of biological process Gene Ontology (GO) terms, we identified over-represented terms and pathways among the candidate genes. Because many different genes and GO terms are associated with climate variables, it seems likely that climate adaptation is polygenic and genetically complex. Our findings also suggest that geographical climate adaptation has been occurring since great tits left their Southern European refugia at the end of the last ice age. Finally, we show that substantial climate-associated genetic variation remains, which will be essential for adaptation to future changes

    Telomere length data from a wild population of Seychelles Warblers on Cousin Island, 1995-2014

    No full text
    These data consist of relative telomere length (RTL) measures from quantitative polymerase chain reaction, of Seychelles warbler birds on Cousin Island, Seychelles. The data were collected by the Seychelles Warbler Project in 1995-2014. Data include bird identity, sex, age, birth period, qPCR plate identity, RTL, technician, territory, field period, mum ID, dad ID, mum age at conception, dad age at conception, dominant female ID in the natal territory, dominant male ID in the natal territory,Blood samples (~25 ÎŒl) were collected and stored at room temperature in absolute ethanol. DNA was extracted using a DNeasy blood and tissue kit (Qiagen) according to the manufacturer’s instructions with modiïŹcation of overnight lysis at 37 °C and a ïŹnal DNA elution volume of 80 ÎŒl. DNA concentration and purity were quantified using a NanoDrop 8000 Spectrophotometer (ThermoScientific). The following thresholds were applied before samples were included for further analysis: (1) DNA concentration must be at least 15 ng/ÎŒl (based on a mean of three measurements), (2) the 260/280 absorbance ratio has to be between 1.8 and 2.0 for acceptable DNA purity, and (3) the 260/230 absorbance ratio must be higher than 1.8. DNA integrity was further validated by visualisation with ethidium bromide after electrophoresis on a 1.2% agarose gel, and all samples with evidence of DNA degradation were re-extracted or excluded. All DNA extractions that passed the above criteria were diluted to 3.3 ng/ÎŒl before telomere measurement. We used quantitative polymerase chain reaction to calculate a relative measure of telomere length that describes the amount of telomeric DNA in a sample relative to that of GAPDH, a constantly expressed reference gene.

    High-utility conserved avian microsatellite markers enable parentage and population studies across a wide range of species

    Get PDF
    Background Microsatellites are widely used for many genetic studies. In contrast to single nucleotide polymorphism (SNP) and genotyping-by-sequencing methods, they are readily typed in samples of low DNA quality/concentration (e.g. museum/non-invasive samples), and enable the quick, cheap identification of species, hybrids, clones and ploidy. Microsatellites also have the highest cross-species utility of all types of markers used for genotyping, but, despite this, when isolated from a single species, only a relatively small proportion will be of utility. Marker development of any type requires skill and time. The availability of sufficient “off-the-shelf” markers that are suitable for genotyping a wide range of species would not only save resources but also uniquely enable new comparisons of diversity among taxa at the same set of loci. No other marker types are capable of enabling this. We therefore developed a set of avian microsatellite markers with enhanced cross-species utility. Results We selected highly-conserved sequences with a high number of repeat units in both of two genetically distant species. Twenty-four primer sets were designed from homologous sequences that possessed at least eight repeat units in both the zebra finch (Taeniopygia guttata) and chicken (Gallus gallus). Each primer sequence was a complete match to zebra finch and, after accounting for degenerate bases, at least 86% similar to chicken. We assessed primer-set utility by genotyping individuals belonging to eight passerine and four non-passerine species. The majority of the new Conserved Avian Microsatellite (CAM) markers amplified in all 12 species tested (on average, 94% in passerines and 95% in non-passerines). This new marker set is of especially high utility in passerines, with a mean 68% of loci polymorphic per species, compared with 42% in non-passerine species. Conclusions When combined with previously described conserved loci, this new set of conserved markers will not only reduce the necessity and expense of microsatellite isolation for a wide range of genetic studies, including avian parentage and population analyses, but will also now enable comparisons of genetic diversity among different species (and populations) at the same set of loci, with no or reduced bias. Finally, the approach used here can be applied to other taxa in which appropriate genome sequences are available

    The great tit HapMap project: a continental‐scale analysis of genomic variation in a songbird

    Get PDF
    A major aim of evolutionary biology is to understand why patterns of genomic diversity vary within taxa and space. Large-scale genomic studies of widespread species are useful for studying how environment and demography shape patterns of genomic divergence. Here, we describe one of the most geographically comprehensive surveys of genomic variation in a wild vertebrate to date; the great tit (Parus major) HapMap project. We screened ca 500,000 SNP markers across 647 individuals from 29 populations, spanning ~30 degrees of latitude and 40 degrees of longitude – almost the entire geographical range of the European subspecies. Genome-wide variation was consistent with a recent colonisation across Europe from a South-East European refugium, with bottlenecks and reduced genetic diversity in island populations. Differentiation across the genome was highly heterogeneous, with clear ‘islands of differentiation’, even among populations with very low levels of genome-wide differentiation. Low local recombination rates were a strong predictor of high local genomic differentiation (FST), especially in island and peripheral mainland populations, suggesting that the interplay between genetic drift and recombination causes highly heterogeneous differentiation landscapes. We also detected genomic outlier regions that were confined to one or more peripheral great tit populations, probably as a result of recent directional selection at the species' range edges. Haplotype-based measures of selection were related to recombination rate, albeit less strongly, and highlighted population-specific sweeps that likely resulted from positive selection. Our study highlights how comprehensive screens of genomic variation in wild organisms can provide unique insights into spatio-temporal evolutionary dynamics
    corecore