314 research outputs found

    Laser-induced Precession of Magnetization in GaMnAs

    Full text link
    We report on the photo-induced precession of the ferromagnetically coupled Mn spins in (Ga,Mn)As, which is observed even with no external magnetic field applied. We concentrate on various experimental aspects of the time-resolved magneto-optical Kerr effect (TR-MOKE) technique that can be used to clarify the origin of the detected signals. We show that the measured data typically consist of several different contributions, among which only the oscillatory signal is directly connected with the ferromagnetic order in the sample.Comment: 4 pages, 5 figure

    tRNAdb 2009: compilation of tRNA sequences and tRNA genes

    Get PDF
    One of the first specialized collections of nucleic acid sequences in life sciences was the ‘compilation of tRNA sequences and sequences of tRNA genes’ (http://www.trna.uni-bayreuth.de). Here, an updated and completely restructured version of this compilation is presented (http://trnadb.bioinf.uni-leipzig.de). The new database, tRNAdb, is hosted and maintained in cooperation between the universities of Leipzig, Marburg, and Strasbourg. Reimplemented as a relational database, tRNAdb will be updated periodically and is searchable in a highly flexible and user-friendly way. Currently, it contains more than 12 000 tRNA genes, classified into families according to amino acid specificity. Furthermore, the implementation of the NCBI taxonomy tree facilitates phylogeny-related queries. The database provides various services including graphical representations of tRNA secondary structures, a customizable output of aligned or un-aligned sequences with a variety of individual and combinable search criteria, as well as the construction of consensus sequences for any selected set of tRNAs

    A unique tRNA recognition mechanism of Caenorhabditis elegans mitochondrial EF-Tu2

    Get PDF
    Nematode mitochondria expresses two types of extremely truncated tRNAs that are specifically recognized by two distinct elongation factor Tu (EF-Tu) species named EF-Tu1 and EF-Tu2. This is unlike the canonical EF-Tu molecule that participates in the standard protein biosynthesis systems, which basically recognizes all elongator tRNAs. EF-Tu2 specifically recognizes Ser-tRNA(Ser) that lacks a D arm but has a short T arm. Our previous study led us to speculate the lack of the D arm may be essential for the tRNA recognition of EF-Tu2. However, here, we showed that the EF-Tu2 can bind to D arm-bearing Ser-tRNAs, in which the D–T arm interaction was weakened by the mutations. The ethylnitrosourea-modification interference assay showed that EF-Tu2 is unique, in that it interacts with the phosphate groups on the T stem on the side that is opposite to where canonical EF-Tu binds. The hydrolysis protection assay using several EF-Tu2 mutants then strongly suggests that seven C-terminal amino acid residues of EF-Tu2 are essential for its aminoacyl-tRNA-binding activity. Our results indicate that the formation of the nematode mitochondrial (mt) EF-Tu2/GTP/aminoacyl-tRNA ternary complex is probably supported by a unique interaction between the C-terminal extension of EF-Tu2 and the tRNA

    Light-induced magnetization precession in GaMnAs

    Full text link
    We report dynamics of the transient polar Kerr rotation (KR) and of the transient reflectivity induced by femtosecond laser pulses in ferromagnetic (Ga,Mn)As with no external magnetic field applied. It is shown that the measured KR signal consist of several different contributions, among which only the oscillatory signal is directly connected with the ferromagnetic order in (Ga,Mn)As. The origin of the light-induced magnetization precession is discussed and the magnetization precession damping (Gilbert damping) is found to be strongly influenced by annealing of the sample.Comment: 6 pages, 4 figures. accepted in Applied Physics Letter

    Genomic Heterogeneity in a Natural Archaeal Population Suggests a Model of tRNA Gene Disruption

    Get PDF
    Understanding the mechanistic basis of the disruption of tRNA genes, as manifested in the intron-containing and split tRNAs found in Archaea, will provide considerable insight into the evolution of the tRNA molecule. However, the evolutionary processes underlying these disruptions have not yet been identified. Previously, a composite genome of the deep-branching archaeon Caldiarchaeum subterraneum was reconstructed from a community genomic library prepared from a C. subterraneum–dominated microbial mat. Here, exploration of tRNA genes from the library reveals that there are at least three types of heterogeneity at the tRNAThr(GGU) gene locus in the Caldiarchaeum population. All three involve intronic gain and splitting of the tRNA gene. Of two fosmid clones found that encode tRNAThr(GGU), one (tRNAThr-I) contains a single intron, whereas another (tRNAThr-II) contains two introns. Notably, in the clone possessing tRNAThr-II, a 5′ fragment of the tRNAThr-I (tRNAThr-F) gene was observed 1.8-kb upstream of tRNAThr-II. The composite genome contains both tRNAThr-II and tRNAThr-F, although the loci are >500 kb apart. Given that the 1.8-kb sequence flanked by tRNAThr-F and tRNAThr-II is predicted to encode a DNA recombinase and occurs in six regions of the composite genome, it may be a transposable element. Furthermore, its dinucleotide composition is most similar to that of the pNOB8-type plasmid, which is known to integrate into archaeal tRNA genes. Based on these results, we propose that the gain of the tRNA intron and the scattering of the tRNA fragment occurred within a short time frame via the integration and recombination of a mobile genetic element

    An Introduction to RNA Databases

    Full text link
    We present an introduction to RNA databases. The history and technology behind RNA databases is briefly discussed. We examine differing methods of data collection and curation, and discuss their impact on both the scope and accuracy of the resulting databases. Finally, we demonstrate these principals through detailed examination of four leading RNA databases: Noncode, miRBase, Rfam, and SILVA.Comment: 27 pages, 10 figures, 1 tables. Submitted as a chapter for "An introduction to RNA bioinformatics" to be published by "Methods in Molecular Biology

    Clinicopathological and prognostic significance of EGFR, VEGF, and HER2 expression in cholangiocarcinoma

    Get PDF
    Epidermal growth factor receptor (EGFR), vascular endothelial growth factor (VEGF), and human epidermal growth factor receptor 2 (HER2) have been considered as potential therapeutic targets in cholangiocarcinoma, but no studies have yet clarified the clinicopathological or prognostic significance of these molecules. Immunohistochemical expression of these molecules was assessed retrospectively in 236 cases of cholangiocarcinoma, as well as associations between the expression of these molecules and clinicopathological factors or clinical outcome. The proportions of positive cases for EGFR, VEGF, and HER2 overexpression were 27.4, 53.8, and 0.9% in intrahepatic cholangiocarcinoma (IHCC), and 19.2, 59.2, and 8.5% in extrahepatic cholangiocarcinoma (EHCC), respectively. Clinicopathologically, EGFR overexpression was associated with macroscopic type (P=0.0120), lymph node metastasis (P=0.0006), tumour stage (P=0.0424), lymphatic vessel invasion (P=0.0371), and perineural invasion (P=0.0459) in EHCC, and VEGF overexpression with intrahepatic metastasis (P=0.0224) in IHCC. Multivariate analysis showed that EGFR expression was a significant prognostic factor (hazard ratio (HR), 2.67; 95% confidence interval (CI), 1.52–4.69; P=0.0006) and also a risk factor for tumour recurrence (HR, 1.89; 95% CI, 1.05–3.39, P=0.0335) in IHCC. These results suggest that EGFR expression is associated with tumour progression and VEGF expression may be involved in haematogenic metastasis in cholangiocarcinoma

    Evolutionary Modeling and Prediction of Non-Coding RNAs in Drosophila

    Get PDF
    We performed benchmarks of phylogenetic grammar-based ncRNA gene prediction, experimenting with eight different models of structural evolution and two different programs for genome alignment. We evaluated our models using alignments of twelve Drosophila genomes. We find that ncRNA prediction performance can vary greatly between different gene predictors and subfamilies of ncRNA gene. Our estimates for false positive rates are based on simulations which preserve local islands of conservation; using these simulations, we predict a higher rate of false positives than previous computational ncRNA screens have reported. Using one of the tested prediction grammars, we provide an updated set of ncRNA predictions for D. melanogaster and compare them to previously-published predictions and experimental data. Many of our predictions show correlations with protein-coding genes. We found significant depletion of intergenic predictions near the 3′ end of coding regions and furthermore depletion of predictions in the first intron of protein-coding genes. Some of our predictions are colocated with larger putative unannotated genes: for example, 17 of our predictions showing homology to the RFAM family snoR28 appear in a tandem array on the X chromosome; the 4.5 Kbp spanned by the predicted tandem array is contained within a FlyBase-annotated cDNA
    corecore