691 research outputs found

    Rational methods for the selection of diverse screening compounds.

    Get PDF
    Traditionally a pursuit of large pharmaceutical companies, high-throughput screening assays are becoming increasingly common within academic and government laboratories. This shift has been instrumental in enabling projects that have not been commercially viable, such as chemical probe discovery and screening against high-risk targets. Once an assay has been prepared and validated, it must be fed with screening compounds. Crafting a successful collection of small molecules for screening poses a significant challenge. An optimized collection will minimize false positives while maximizing hit rates of compounds that are amenable to lead generation and optimization. Without due consideration of the relevant protein targets and the downstream screening assays, compound filtering and selection can fail to explore the great extent of chemical diversity and eschew valuable novelty. Herein, we discuss the different factors to be considered and methods that may be employed when assembling a structurally diverse compound collection for screening. Rational methods for selecting diverse chemical libraries are essential for their effective use in high-throughput screens.We are grateful for financial support from the MRC, Wellcome Trust, CRUK, EPSRC, BBSRC and Newman Trust.This is the author accepted manuscript. The final version is available from American Chemical Society via http://dx.doi.org/10.1021/cb100420

    Identification of key residues that confer Rhodobacter sphaeroides LPS activity at horse TLR4/MD-2.

    Get PDF
    The molecular determinants underpinning how hexaacylated lipid A and tetraacylated precursor lipid IVa activate Toll-like receptor 4 (TLR4) are well understood, but how activation is induced by other lipid A species is less clear. Species specificity studies have clarified how TLR4/MD-2 recognises different lipid A structures, for example tetraacylated lipid IVa requires direct electrostatic interactions for agonism. In this study, we examine how pentaacylated lipopolysaccharide from Rhodobacter sphaeroides (RSLPS) antagonises human TLR4/MD-2 and activates the horse receptor complex using a computational approach and cross-species mutagenesis. At a functional level, we show that RSLPS is a partial agonist at horse TLR4/MD-2 with greater efficacy than lipid IVa. These data suggest the importance of the additional acyl chain in RSLPS signalling. Based on docking analysis, we propose a model for positioning of the RSLPS lipid A moiety (RSLA) within the MD-2 cavity at the TLR4 dimer interface, which allows activity at the horse receptor complex. As for lipid IVa, RSLPS agonism requires species-specific contacts with MD-2 and TLR4, but the R2 chain of RSLA protrudes from the MD-2 pocket to contact the TLR4 dimer in the vicinity of proline 442. Our model explains why RSLPS is only partially dependent on horse TLR4 residue R385, unlike lipid IVa. Mutagenesis of proline 442 into a serine residue, as found in human TLR4, uncovers the importance of this site in RSLPS signalling; horse TLR4 R385G/P442S double mutation completely abolishes RSLPS activity without its counterpart, human TLR4 G384R/S441P, being able to restore it. Our data highlight the importance of subtle changes in ligand positioning, and suggest that TLR4 and MD-2 residues that may not participate directly in ligand binding can determine the signalling outcome of a given ligand. This indicates a cooperative binding mechanism within the receptor complex, which is becoming increasingly important in TLR signalling.This work was supported by a project grant from the Horserace Betting Levy Board to CEB and a Horserace Betting Levy Board Veterinary Research Training Scholarship to KLI. This work was also supported by a Wellcome Trust program grant to NJG and CEB. CEB is a BBSRC Research Development Fellow.This is the final version of the article. It first appeared from PLOS at http://dx.doi.org/10.1371/journal.pone.0098776

    Which microbial factors really are important in Pseudomonas aeruginosa infections?

    Get PDF
    Over the last two decades, tens of millions of dollars have been invested in understanding virulence in the human pathogen, Pseudomonas aeruginosa. However, the top 'hits' obtained in a recent TnSeq analysis aimed at identifying those genes that are conditionally essential for infection did not include most of the known virulence factors identified in these earlier studies. Instead, it seems that P. aeruginosa faces metabolic challenges in vivo, and unless it can overcome these, it fails to thrive and is cleared from the host. In this review, we look at the kinds of metabolic pathways that the pathogen seems to find essential, and comment on how this knowledge might be therapeutically exploited.Work in the MW laboratory is funded by the BBSRC (grant BB/M019411/1) and the EU (Marie Curie Educational Training Network “INTEGRATE”). AC is supported by the Cambridge Trusts. EM is funded by a studentship from the MRC. SB is supported by a Hershel Smith studentship. E-FU is a clinical research fellow funded by the CF Trust (UK), Papworth Hospital NHS Trust and the Wellcome Trust. YA is supported by a scholarship from the Yosef Jameel Foundation. YB is an EPSRC-funded PhD student. Work in the laboratory of AF is supported by the Wellcome Trust. Work in the DRS laboratory is supported by the EPSRC.This is the author accepted manuscript. The final version is available from Future Science Group via http://dx.doi.org/10.2217/fmb.15.10

    Allosteric modulation of AURKA kinase activity by a small-molecule inhibitor of its protein-protein interaction with TPX2.

    Get PDF
    The essential mitotic kinase Aurora A (AURKA) is controlled during cell cycle progression via two distinct mechanisms. Following activation loop autophosphorylation early in mitosis when it localizes to centrosomes, AURKA is allosterically activated on the mitotic spindle via binding to the microtubule-associated protein, TPX2. Here, we report the discovery of AurkinA, a novel chemical inhibitor of the AURKA-TPX2 interaction, which acts via an unexpected structural mechanism to inhibit AURKA activity and mitotic localization. In crystal structures, AurkinA binds to a hydrophobic pocket (the 'Y pocket') that normally accommodates a conserved Tyr-Ser-Tyr motif from TPX2, blocking the AURKA-TPX2 interaction. AurkinA binding to the Y- pocket induces structural changes in AURKA that inhibit catalytic activity in vitro and in cells, without affecting ATP binding to the active site, defining a novel mechanism of allosteric inhibition. Consistent with this mechanism, cells exposed to AurkinA mislocalise AURKA from mitotic spindle microtubules. Thus, our findings provide fresh insight into the catalytic mechanism of AURKA, and identify a key structural feature as the target for a new class of dual-mode AURKA inhibitors, with implications for the chemical biology and selective therapeutic targeting of structurally related kinases.We are grateful for the access and support at beamlines i02, i03 and i04-1 at Diamond Light Source at Harwell, UK (proposal MX9007 and MX9537) and at beamline Proxima1 at the SOLEIL Synchrotron, Gif-sur-Yvette, France. We are grateful for access and support from the X-ray and biophysics facilities (Dept. of Biochemistry) and the screening/imaging facility (MRC Cancer Unit). M.J. was supported by a Cancer Research UK studentship held in the labs of DS and ARV, PS and MR by a Wellcome Trust Strategic Award to ARV and MH, and DJH, BH, AJN and GM by grants from the UK Medical Research Council to ARV.This is the final version of the article. It first appeared from Nature Publishing Group via http://dx.doi.org/10.1038/srep2852

    Multifunctional supramolecular polymer networks as next-generation consolidants for archaeological wood conservation.

    Get PDF
    The preservation of our cultural heritage is of great importance to future generations. Despite this, significant problems have arisen with the conservation of waterlogged wooden artifacts. Three major issues facing conservators are structural instability on drying, biological degradation, and chemical degradation on account of Fe(3+)-catalyzed production of sulfuric and oxalic acid in the waterlogged timbers. Currently, no conservation treatment exists that effectively addresses all three issues simultaneously. A new conservation treatment is reported here based on a supramolecular polymer network constructed from natural polymers with dynamic cross-linking formed by a combination of both host-guest complexation and a strong siderophore pendant from a polymer backbone. Consequently, the proposed consolidant has the ability to chelate and trap iron while enhancing structural stability. The incorporation of antibacterial moieties through a dynamic covalent linkage into the network provides the material with improved biological resistance. Exploiting an environmentally compatible natural material with completely reversible chemistries is a safer, greener alternative to current strategies and may extend the lifetime of many culturally relevant waterlogged artifacts around the world.This is the author's accepted manuscript. The final version is available from PNAS at http://www.pnas.org/content/111/50/17743.long

    Using Peptidomimetics and Constrained Peptides as Valuable Tools for Inhibiting Protein⁻Protein Interactions.

    Get PDF
    Protein⁻protein interactions (PPIs) are tremendously important for the function of many biological processes. However, because of the structure of many protein⁻protein interfaces (flat, featureless and relatively large), they have largely been overlooked as potential drug targets. In this review, we highlight the current tools used to study the molecular recognition of PPIs through the use of different peptidomimetics, from small molecules and scaffolds to peptides. Then, we focus on constrained peptides, and in particular, ways to constrain α-helices through stapling using both one- and two-component techniques

    Diversity-oriented synthesis as a tool for identifying new modulators of mitosis.

    Get PDF
    The synthesis of diverse three-dimensional libraries has become of paramount importance for obtaining better leads for drug discovery. Such libraries are predicted to fare better than traditional compound collections in phenotypic screens and against difficult targets. Herein we report the diversity-oriented synthesis of a compound library using rhodium carbenoid chemistry to access structurally diverse three-dimensional molecules and show that they access biologically relevant areas of chemical space using cheminformatic analysis. High-content screening of this library for antimitotic activity followed by chemical modification identified 'Dosabulin', which causes mitotic arrest and cancer cell death by apoptosis. Its mechanism of action is determined to be microtubule depolymerization, and the compound is shown to not significantly affect vinblastine binding to tubulin; however, experiments suggest binding to a site vicinal or allosteric to Colchicine. This work validates the combination of diversity-oriented synthesis and phenotypic screening as a strategy for the discovery of biologically relevant chemical entities.This is the author's accepted manuscript. The final version was published in Nature Communications here: http://www.nature.com/ncomms/2014/140117/ncomms4155/full/ncomms4155.html#affil-auth

    Associations between fruit and vegetable intake, leisure-time physical activity, sitting time and self-rated health among older adults : cross-sectional data from the WELL study

    Get PDF
    BackgroundLifestyle behaviours, such as healthy diet, physical activity and sedentary behaviour, are key elements of healthy ageing and important modifiable risk factors in the prevention of chronic diseases. Little is known about the relationship between these behaviours in older adults. The purpose of this study was to explore the relationship between fruit and vegetable (F&V) intake, leisure-time physical activity (LTPA) and sitting time (ST), and their association with self-rated health in older adults.MethodsThis cross-sectional study comprised 3,644 older adults (48% men) aged 55-65 years, who participated in the Wellbeing, Eating and Exercise for a Long Life ("WELL") study. Respondents completed a postal survey about their health and their eating and physical activity behaviours in 2010 (38% response rate). Spearman\u27s coefficient (rho) was used to evaluate the relationship between F&V intake, LTPA and ST. Their individual and shared associations with self-rated health were examined using ordinal logistic regression models, stratified by sex and adjusted for confounders (BMI, smoking, long-term illness and socio-demographic characteristics).ResultsThe correlations between F&V intake, LTPA and ST were low. F&V intake and LTPA were positively associated with self-rated health. Each additional serving of F&V or MET-hour of LTPA were associated with approximately 10% higher likelihood of reporting health as good or better among women and men. The association between ST and self-rated health was not significant in the multivariate analysis. A significant interaction was found (ST*F&V intake). The effect of F&V intake on self-rated health increased with increasing ST in women, whereas the effect decreased with increasing ST in men.ConclusionThis study contributes to the scarce literature related to lifestyle behaviours and their association with health indicators among older adults. The findings suggest that a modest increase in F&V intake, or LTPA could have a marked effect on the health of older adults. Further research is needed to fully understand the correlates and determinants of lifestyle behaviours, particularly sitting time, in this age group

    Synthesis and Reactivity of a Bis-Strained Alkyne Derived from 1,1'-Biphenyl-2,2',6,6'-tetrol.

    Get PDF
    The novel "double strained alkyne" 3 has been prepared and evaluated in strain-promoted azide-alkyne cycloaddition reactions with azides. The X-ray crystallographic structure of 3, which was prepared in one step from 1,1'-biphenyl-2,2',6,6'-tetrol 4, reveals the strained nature of the alkynes. Dialkyne 3 undergoes cycloaddition reactions with a number of azides, giving mixtures of regiosiomeric products in excellent yields. The monoaddition products were not observed or isolated from the reactions, suggesting that the second cycloaddition proceeds at a faster rate than the first, and this is supported by molecular modeling studies. Dialkyne 3 was successfully employed for "peptide stapling" of a p53-based diazido peptide, whereby two azides are bridged to give a product with a stabilized conformation

    Synthesis and biological evaluation of 1,2-disubsubstituted 4-quinolone analogues of Pseudonocardia sp. natural products.

    Get PDF
    A series of analogues of Pseudonocardia sp. natural products were synthesized, which have been reported to possess potent antibacterial activity against Helicobacter pylori and induce growth defects in Escherichia coli and Staphylococcus aureus. Taking inspiration from a methodology used in our total synthesis of natural products, we applied this methodology to access analogues possessing bulky N-substituents, traditionally considered to be challenging scaffolds. Screening of the library provided valuable insights into the structure-activity relationship of the bacterial growth defects, and suggested that selectivity between bacterial species should be attainable. Furthermore, a structurally related series of analogues was observed to inhibit production of the virulence factor pyocyanin in the human pathogen Pseudomonas aeruginosa, which may be a result of their similarity to the Pseudomonas quinolone signal (PQS) quorum sensing autoinducer. This provided new insights regarding the effect of N-substitution in PQS analogues, which has been hitherto underexplored.SF was supported by a BBSRC studentship. DRS acknowledges support from the Engineering and Physical Sciences Research Council (EP/P020291/1) and Royal Society (Wolfson Research Merit Award)
    corecore