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Keywords 

Drug-like Molecule: A molecule with molecular properties that overlap with the majority of 

existing drugs. 

High-throughput Screening: A screening process that utilises robotics and rapid data 

processing to perform millions of assays in a short space of time.  

Molecular Similarity: A measure of the relatedness of two molecules. This would ideally 

quantify the similarity in biological effect but in practice tends to quantify the similarity in 

structure. 

Molecular Diversity: A measure of how well a subset of molecules represents a larger set of 

molecules. A more diverse subset will tend to have a lower molecular similarity between 

molecules. 

Frequent Hitter: A molecule or molecular substructure that hits numerous screening assays on 

different drug targets with a mode of action that is assumed to be non-specific. 

Substructure Filter: A computational filter used to remove molecules containing molecular 

substructures that are considered to give rise to non-specific binding or deleterious 

pharmacodynamic properties. 
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Abbreviations 

 

ADMET: Absorption, distribution, metabolism, elimination and toxicity. 

HTS: High-throughput screening. 

logP: Octanol/water partition coefficient.  

PAINS: Pan assay interference compounds. 

PSA: Polar surface area.REOS: Rapid elimination of swill. 

 

Abstract 

Traditionally a pursuit of large pharmaceutical companies, high-throughput screening assays are 

becoming increasingly common within academic and government laboratories. This shift has 

been instrumental in enabling projects that have not been commercially viable, such as chemical 

probe discovery and screening against high risk targets. Once an assay has been prepared and 

validated, it must be fed with screening compounds. Crafting a successful collection of small 

molecules for screening poses a significant challenge. An optimized collection will minimize 

false positives whilst maximizing hit rates of compounds that are amenable to lead generation 

and optimization. Without due consideration of the relevant protein targets and the downstream 

screening assays, compound filtering and selection can fail to explore the great extent of 

chemical diversity and eschew valuable novelty. Herein, we discuss the different factors to be 

considered and methods that may be employed when assembling a structurally diverse 

compound screening collection. Rational methods for selecting diverse chemical libraries are 

essential for their effective use in high-throughput screens. 
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Introduction 

The earliest efforts in drug discovery focused on crude extracts from natural sources and success 

relied mainly on trial and error. Work in the middle of last century established the concept of a 

molecular disease(1), moving drug discovery in a more rational direction and toward screening 

compounds against a molecular target. Natural products provided the majority of early drugs and 

still remain as an invaluable source of chemicals for screening, along with semi-synthetic 

derivatives(2). In more recent times, the advent of combinatorial chemistry provided a radical 

increase in the number of available screening compounds and this was coupled with high-

throughput screening (HTS) of large chemical libraries(3). Despite many failures amongst the 

successes, HTS remains a widely used method for initiating the process of drug and chemical 

probe discovery(4-9). The concept of a drug-like molecule has existed for many years(10) and 

includes optimized parameters for physicochemical properties as well as functional groups to be 

avoided. This concept has been extended to consider lead-like instead of drug-like 

molecules(11), and this progresses naturally to the identification of hit-like molecules, which are 

geared to provide true positive results in HTS assays and yield a basis for lead generation(12). 

The vastness of chemical space means that there are currently tens of millions of molecules 

available for purchase and screening. Even using harsh filters to remove unwanted compounds, 

there are in the order of a million hit-like molecules available commercially(13-14). However, 

identifying a representative subset of these molecules to screen is a complex task, with multiple 

scientific, financial and logistical considerations. Whilst this review article is unable to 

comprehensively cover the multifold aspects of library design, its aim is to highlight the key 

issues that must be taken into account. This is now important in academic groups and 

government labs as well as in industry(15). Here we review current methods for crafting 

screening compound collections and outline the traps and pitfalls. This will be done in three 

sections: compound sourcing, compound filtering and compound selection. Finally, we highlight 

key challenges to the field and outline future directions. 
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Compound Sourcing 

There are many suppliers of screening compounds, ranging from small chemical suppliers with 

hundreds of compounds to large ones with over a million compounds. Many collections of small 

molecules have been analyzed for drug-like and lead-like properties (13, 16-20) and chemical 

supplier libraries are being increasingly tailored toward these parameters. Details of the main 

screening libraries from six chemical suppliers with varied collections of over 300,000 screening 

compounds are reported in Table 1. At present, all have a high pass rate for commonly employed 

drug-like and lead-like filters. However, compound collections turn over rapidly and should be 

analysed in this way prior to selecting suppliers. Compound prices per milligram vary widely 

dependent on the number of compounds purchased and the sample weight per compound 

required, with significantly lower prices per compound if thousands or tens of thousands are 

purchased. Theoretically, searching the entirety of currently available chemical space 

encompasses the maximum commercially available molecular diversity. In practice, a great 

expanse of available diversity can be sampled by selecting large numbers of compounds from a 

few chemical suppliers with diverse collections. Many chemical suppliers also sell pre-selected 

diverse libraries at reduced cost. These are generally selected by rational means, but the 

compound filters employed may have been too harsh or too lenient, dependent on the nature of 

the screening assay and the target. Furthemore, although the compounds tend to be relatively 

diverse, they are also much more likely to have been tested by other laboratories, as they are for 

sale off-the-shelf. Including novelty in HTS is a vital aspect of drug discovery and many firms 

offer unlisted libraries at higher costs, promising an easier path to intellectual property rights.  

Compound Databases. In addition to compound libraries direct from chemical suppliers, there 

are a number of preassembled online data repositories including ZINC(21) 

(http://zinc.docking.org/), emolecules (http://www.emolecules.com/) and Chemspider 

(http://www.chemspider.com/). The ZINC repository currently has the largest number of 

compounds, including the complete compound libraries of the majority of chemical suppliers. 

The number of molecules in the ZINC set of purchasable compounds currently stands at just 

under 18.7 million. However, chemical suppliers commonly update their libraries every few 

months, which may not be reflected in data repositories such as ZINC. Despite the huge number 

of commercially available compounds, existing chemistry efforts have only probed a small 

proportion of chemical space. The number of synthetically feasible, drug-like molecules is 

estimated to be in excess of 10
60

 (22) and only a small subset of this has been explored. For 

example, data compiled in the Generated Database of Molecules (http://www.dcb-

server.unibe.ch/groups/reymond/gdb/start.html) demonstrates that less than 0.5% of the 

synthetically feasible compounds comprised of up to 11 atoms of C, N, O and F are recorded in 

public databases as having been synthesised(23). Recent studies have also highlighted a large 

number of novel ring systems that are not currently represented in available chemical space(24). 

Many sources of diversity are excluded from existing compound collections and this greatly 

restricts the coverage of chemical space. In particular, the bias against chirality skews 

commercially available compounds toward flat compounds with many aromatic rings(25). This 

in turn may negatively impact on the properties related to absorption, distribution, metabolism, 

elimination and toxicity (ADMET) and increase the risk of attrition during development(26). 

Shelat and Guy have questioned whether libraries of synthetic molecules are suitable for 

addressing novel drug targets and suggest the use of natural products in HTS, particularly for 

phenotypic and high-content screens.  

http://zinc.docking.org/
http://www.emolecules.com/
http://www.chemspider.com/
http://www.dcb-server.unibe.ch/groups/reymond/gdb/start.html
http://www.dcb-server.unibe.ch/groups/reymond/gdb/start.html
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Natural Products. The vast majority of commercially available small molecules are obtained 

from synthetic chemistry. Nonetheless, nature is an important source of biologically active 

compounds and natural products have played a key role in drug discovery efforts. It has been 

estimated that as many as 50% of marketed small molecule drugs have been derived from natural 

products(27). However, of the compounds currently approved for marketing each year, natural 

products represent a much lower percentage. Many chemical suppliers sell natural products for 

HTS and some chemical suppliers specialize in natural product chemistry. The natural product 

collections are usually separated from synthetic compounds and can be significantly more 

expensive. However, they can provide unique chemical structures, and may show more drug-like 

ADMET properties(28). Natural products have proven particularly powerful as anti-cancer and 

anti-infective agents(2) and tend to be well suited to phenotypic screening. Recent analysis 

shows that there are many ring systems present in natural products that are not found in 

screening libraries and many have suggested that screening compounds should be further biased 

toward biogenic scaffolds(29-30). However, the advantages of natural products must be balanced 

against their often greater structural complexity that may lead to difficulties in synthesis and 

purification of analogues during lead generation and optimization. There is still great controversy 

over the relative merits of screening natural products or natural product derivatives versus 

screening libraries from combinatorial chemistry or diversity oriented synthesis(31). Both have 

advantages and disadvantages and thus HTS library commonly combine both sources, though 

typically with more synthetic small molecules. Recently, it has been suggested that compounds 

balancing the properties of natural products and synthetic molecules may be optimal(32). 

In summary, there are multiple sources of potential screening compounds and successful libraries 

typically strike a balance between synthetic compounds and natural products. However, whilst 

the growth in commercially available chemical space should always be capitalized upon, many 

compounds are unsuitable for screening in HTS assays and should be filtered out of any quality 

screening collection. 

Compound Filtering 

In order to obtain commercially available hit-like compounds, computational filters are 

commonly used to remove compounds with undesirable properties. Ideal drug-like and lead-like 

molecules have differing properties and these differ again from hit-like molecules. In general, the 

physicochemical properties of a lead-like molecule can be improved during lead optimization 

toward a drug-like molecule by tailoring the lipophilicity. Similarly, the binding affinity of a hit-

like molecule can be improved during the process of hit explosion to yield a lead-like molecule. 

However, hit-like molecules must be large and lipophilic enough to gain sufficient binding 

affinity that they can be identified in a screening assay, but not so large that they have a very 

small probability of binding. Larger and more complex molecules have a lower probability of 

exhibiting perfect shape and electrostatic complementarity with any given target and this 

suggests that smaller and less complex molecules will more commonly provide starting points 

for drug development(33). An ideal hit molecule should also be amenable to chemical 

elaboration, show reasonable levels of cell permeability and have a range of commercially 

available analogues, some of which have also been tested in the same assay. 

Computational Filters. There are numerous computational filters used to mark compounds that 

may have problems due to assay interference or downstream ADMET properties. The most 

commonly used of these are physicochemical property filters that specifically attempt to remove 
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compounds that may lead to low levels of drug absorption and distribution. An exception that is 

ignored by these filters is compounds that are substrates for drug transporters, which recent 

works suggests may be a significant proportion of molecules(34). In addition to Lipinski’s well 

known rule of five(35), Ghose filters(36) and Veber filters(37) are commonly employed to filter 

compounds. Noteworthy analysis has also been performed by Walters(38), Oprea(39), Egan(40), 

Lee(41), Baurin(13) and Martin(42). The key properties that determine drug absorption and 

distribution for an oral drug are the lipophilicity measures of the octanol/water partition 

coefficient (logP) and surface area of the polar atoms in the molecule (PSA)(43-45). Analysis of 

trends in launched drugs has highlighted a significant increase in molecular weight in the last 

fifty years, but a negligible increase in logP values(46). This is not surprising, as drugs with 

increased logP tend to be more promiscuous binders and can thus be expected to have a higher 

attrition rate in later development(47). However, studying the most recent trends in molecules 

being synthesized in leading drug discovery companies suggests an increase in both molecular 

weight and logP(46). This has been attributed to the fact that more lipophilic drugs have the 

potential to be more efficacious, as they tend to have increased binding affinity. It has been 

suggested that this may adversely affect drug attrition rates in the future due to an increased 

likelihood of toxicity(48). However, as discussed, larger and more complex molecules have a 

lower probability of exhibiting perfect shape and electrostatic complementarity with any given 

target and they are thus expected to show greater specificity(33). This predicted increase in 

promiscuity due to increased lipophilicity may thus be ameliorated by increased complexity. 

Despite the noted increase in molecular weight, there is great pressure during the development 

process to lower the molecular weight, likely because larger molecules show reduced passive 

absorption across cell membranes, increased number of toxic pharmacophores or rapidly 

metabolized moieties(49). One caveat when filtering on lipophilicity or solubility is to note 

whether you are using experimental values or predicted values. Solubility predictions based on 

clogP values or PSA can be accurate in some circumstances, but are inaccurate in others and tend 

to perform particularly badly for charged compounds(50). Charged compounds may be better 

represented by the octanol/water distribution coefficient logD, which takes into account the 

different protonation states. It is vital to carefully consider whether compounds should be 

excluded based on predicted insolubility, when such predictions can be inaccurate. 

One other significant method for marking ADMET risks are the Rapid Elimination of Swill(51) 

(REOS) filters. As well as physicochemical properties, REOS filters remove molecules 

containing certain functional groups, as described by SMILES or SMARTS patterns(52). Some 

of these are shown in Figure 1. REOS filters flag compounds containing functional groups that 

may lead to false positives due to reactivity or assay interference, which have long been noted as 

a problem in HTS efforts(53). They also remove compounds containing functional groups known 

to be risks for ADMET. However, it is important to note that many known drug molecules fail 

the common physicochemical and substructure filters. The Drugbank(54) 

(http://www.drugbank.ca/) contains structural data for over 1,350 FDA approved small molecule 

drugs and nearly 5000 experimental drug entries. Analysis of the Drugbank experimental drugs 

is shown in Table 1 and reveals that only 71.4% pass all of the Lipinski filters and only 51.7% 

pass all of the REOS substructure filters. This data highlights that compound filtering is used to 

reduce risk, but will also eliminate useful molecules from further consideration. More recently, a 

Herculean analysis of compounds hitting multiple orthogonal HTS assays has lead to the 

identification of pan assay interference compounds (PAINS)(55). As increasing amounts of assay 

data from different HTS efforts around the world is becoming publically available, a clearer 

http://www.drugbank.ca/)
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picture of compounds and functional groups that tend to yield false positives is developing(56). 

This development is vital, as frequent hitters are likely to be over represented in compounds from 

chemical vendors due to an increased likelihood that they will be ordered as analogues of 

apparent hits. Research has also specifically highlighted substructures that alert when a 

compound may be a DNA-reactive genotoxin(57). Whilst this may be acceptable in a screening 

hit, it would almost certainly have to be removed in the hit to lead process. 

Physicochemical Property Filters. The majority of physicochemical property filters are simple to 

understand. Eight drug-like filters and one lead-like filter are described in Table 2. There is 

general agreement, although the exact properties vary slightly. Any of these rules can be used, 

alone or in conjunction, to filter a set of compounds and it is worth noting that many of the 

properties are highly correlated, such as logP and PSA. However, due consideration must be 

given to the details of the screening assay and the nature of the target as this affects the desired 

physicochemical properties of the screening compounds. For example, a fragment with a 

molecular weight of 200 may be too small to show measurable binding in typical HTS assays or 

compete with high-affinity ligands. However, if the assay is tailored to identify smaller 

molecules, fragment based methods have been shown to be very useful, with higher ligand 

efficiencies(58) and a greater potential for chemical elaboration and linking(59). Compound 

filters for fragments are completely different to filters for traditional small molecules. Phenotypic 

screens also place a different pressure on the screening library, with considerably more emphasis 

on cell permeability at the initial stage. As well as the importance of the assay format, the 

composition of an ideal screening library also varies with the protein target. Many existing 

screening libraries and are tailored toward screening against a narrow range of targets such as 

kinases and GPCRs(60). A screening library tailored toward screening against protein-protein 

interactions would have a very different profile. Recent analysis collected in the TIMBAL 

database(24) suggests that inhibitors of protein-protein interactions have higher molecular 

weights and lipophilicity than inhibitors of buried binding sites, as well as a greater number of 

hydrogen bond donors, hydrogen bond acceptors and rotatable bonds. Whilst the general 

applicability of this approach to generating approved drugs remains to be seen, it is an important 

consideration. As well as traditional physicochemical property filters, there are now a number of 

flags for more complex properties(61). Increasing evidence shows that small molecules may 

cause non-specific protein aggregation(62) and thus lead to false positives in some assays. 

Experimental work has shown that a significant number of compounds may act in this way and 

potential risks can be identified and removed from consideration(63). There are also 

experimental methods to identify compound that are reactive, such as ALARM NMR(64), and 

also for compounds containing fluorophores(65). However, whilst the latter is of great 

importance for fluorometric assays, it is of little or no importance in other assays. Experimental 

studies such as PAINS have identified molecular scaffolds that form the basis for promiscuous 

inhibitors and thus yield false positives in many screening assays(55, 66). Defining the 

mechanism underlying the promiscuous inhibition of these PAINS compounds will no doubt 

provide significant but interesting challenges in the next decade. In addition there are now 

methods for predicting compounds that disrupt particular screening assays(67), but these 

methods are approximate and should be used with this understanding. 

Substructure Filters. Many filters simply remove compounds with specific functional groups that 

are known to interfere with HTS assays or cause problems later in drug development. The 

importance of removing these functional groups has been discussed in numerous papers(38, 53). 
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The majority of screening libraries contain very few if any of the most troublesome compounds 

such as aldehydes, epoxides or α-halo ketones. The prevalence of these three groups in the six 

supplier databases is on average 0.3%, 0.01% and 0.04% respectively. However, many still 

contain potential risks such as isolated alkenes (12.3%), αβ-unsaturated carbonyls (8.5%) or nitro 

groups (7.6%). The prevalence of the more common functional groups can be seen in Table 3. 

Each of these substructures is a potential liability for the reasons described in Box 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

However, many of these functional groups do appear in certified drug molecules(68), as shown 

in Table 3, and many show no activity in HTS assays(69). When eliminating functional groups 

due to any ADMET risk, the nature of the functional group should be considered. It may be 

easier to replace a potentially risky side-group at the hit-to-lead stage than a potentially risky 

core group. For example, a nitroaromatic side-group can be replaced with another similar side-

group such as a trifluoromethanesulfonyl side-group to retain or increase binding affinity without 

disrupting the structure of the molecule(70). The same is not true for a 2-aminothiazole core 

group, as its shape and hydrogen bonding characteristics are more difficult to mimic without 

disrupting the structure of the molecule. Despite this, scaffold hopping can be achieved and is 

increasingly common(71). When eliminating functional groups due to the risk of cytotoxicity, it 

is important to consider the target, as some therapies (for cancer in particular) are damaging to 

cells. For example, 2-aminothiazoles may lead to cytotoxicity but they form the basis of a 

number of potent CDK inhibitors for cancer therapy(72). Functional groups implicated in organ 

toxicity may also be acceptable in chemical probe discovery. 

Filtering Tools. There are a number of software packages used to predict chemical properties 

and/or filter screening compounds. This includes Accelrys’ Pipeline Pilot(73), MOE’s 

sdfilter(74), Schrodinger’s qikprop(75) and Openeye’s filter(76), which is freely available to 

Box 1. Screening Liabilities 

 1,2 dicarbonyls – Metabolically unstable/Potential toxicity due to mutagenicity. 

 1,2 dimethoxys – Prone to oxidation yielding reactive quinones. 

 1,4 dimethoxys – Very prone to oxidation yielding reactive quinones. 

 αβ-Unsaturated Carbonyls – Prone to reactivity by acting as a Michael acceptor. 

 Acetals – Metabolically unstable due to acetal hydrolysis. 

 Acylhydrazides – Metabolically unstable due to acyl hydrolysis. 

 Aliphatic Ketones – Metabolically unstable due to nucleophilic attack. 

 Alkenes – Metabolically unstable due to epoxidation. 

 Aminothiazoles – Potential toxicity. 

 Anthracene/Phenanthrene-likes – Known DNA intercalation. 

 Nitro Groups – Prone to reduction yielding reactive species/Potential 

hepatocarcinogens. 

 Methylenedioxys – Metabolically unstable due to acetal hydrolysis/Prone to oxidation 

yielding reactive quinones. 

 Thioureas – Metabolically unstable due to flavin oxidation/Potential non-specific 

protein binding. 

 Unflanked Pyridyls – Potential interference with cytochrome P450s due to metal ion 

coordination. 
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academics. Once the filtering process is complete, it is important to inspect a subset of the 

resulting structures. No matter how sophisticated the filtering criteria and algorithms, a scientist 

should always ensure that the remaining compounds meet their requirements. Despite the 

importance of filtering compounds to prevent screening potentially problematic compounds, it is 

common to screen a small proportion of "wildcards" that do not pass all of the filters. As seen in 

Tables 1 and 2, many drug molecules do not pass the drug-like or lead-like filters and contain 

significant proportions of functional groups that are commonly removed by HTS filters. For 

example, the REOS rule to exclude compounds with more than four joined rings, removes all 

steroids and nearly 10% of the Drugbank experimental drugs. It is important to realise that the 

process of compound filtering is about minimising risk and downstream expenditure rather than 

maximising hit-rate. For example, reactive groups may present the risk of false positives, but 

work has shown that this is not always the case(69). In some cases, reactive groups can act as 

covalent inhibitors, inactivating the target by binding irreversibly, and thus provide an advantage 

over non-covalent inhibitors. However, this activity may be difficult to extract from HTS data as 

it can be hard to discriminate from unwanted reactivity. Potentially reactive compounds should 

remain, at most, a small percentage of any screening library, unless there is a clear plan to extract 

useful data on covalent inhibition from the screening assay. 

In summary, it may be necessary to rethink the process of designing libraries for screening 

against the more diverse range of targets now being considered. Research at Harvard(77), the 

NIH(6, 78), and the DDU in Dundee(9) amongst others has shown that HTS is feasible in a non-

industrial center and can be vital in developing treatments for neglected diseases. Whilst such 

drug development projects must also select screening compounds with care, many of the 

functional group and physicochemical property filters are unsuitable for screening efforts aimed 

at development of chemical probes. Compounds causing assay interference or low solubility 

should be avoided, but compounds causing liver toxicity or poor oral absorption may be 

acceptable. Recent analysis suggests that the nature of screening hits is shifting to larger and 

more lipophilic molecules as a result of the increased use of in vitro assays over in vivo 

assays(79). This is expected to shift or widen the nature of screening libraries. However, the 

exact nature of the assay and the target must be considered when selecting compound exclusions 

as, for a diversity library aiming to span multiple assays and targets, it may not be appropriate to 

remove all potential risks. A balance must be reached between filtering out all compounds that 

are a risk in any drug development program and only filtering compounds that are a risk in all 

programs. There is now a critical mass of published data highlighting risks for compound 

interference and this can easily be applied to hits post screening, along with experimental 

methods to detect false positives such as dose-response plotting. This should ensure that 

screening libraries take advantage of the enormous diversity in chemical space, whilst assessing 

risk appropriately. With respect to chemical diversity, chemical suppliers will only provide chiral 

compounds if there is a market for them and thus filtering out chiral compounds from screening 

libraries will drive the purchasable chemical space further in this direction and away from 

biogenic chemical space. 

Compound Selection 

Aggressive filtering may remove up to 50% of compounds from consideration, but huge numbers 

of commercially available compounds still remain. The main aim of compound selection is to 

pick a subset of these compounds for testing. In general, it is wasteful to test many compounds 
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with similar structures in frontline assays, at the expense of more diverse compounds. Analysis 

has shown that if a compound is biologically active, a molecule with very high similarity will 

have a similar biologically activity and thus testing the second molecule in the frontline assay is 

unlikely to be worthwhile(80-81). It is thus common to select a structurally diverse subset of 

compounds that represents the chemical space being considered. However, chemical space grows 

very rapidly with molecular size and, in 200 years of chemical synthesis, we have covered only a 

tiny fraction of chemical space up to a molecular weight of 500. The biggest screening libraries, 

which are of the order of tens of millions of molecules, can never hope to cover this space. 

Approaching compound selection in a sensible manner is thus very important(82). 

Measuring Chemical Diversity. Molecular similarity is a key prerequisite in assessing molecular 

diversity(83). There are many different techniques to measure whether two compounds are 

similar(81, 84) but none of them are entirely satisfactory. From a pharmaceutical perspective, the 

ideal metric would predict that two compounds are similar if they elicit the same biological 

effect by hitting the same biological target and binding in the same pose. Unfortunately such a 

metric does not exist. Currently used metrics predict that two compounds are similar if they have 

similar chemical connectivity or similar shape and electrostatic form. One important issue in 

assessing chemical similarity is that a compound can be very different in its various 

conformations, tautomers and protonation states. Two compounds that are calculated to be 

similar in specific tautomeric states may be calculated to be different in other states. However, 

there are numerous computational methods for the enumeration of protonation and tautomeric 

states. This includes Schrodinger's Ligprep(85), the Openeye toolkit(76), CCG's MOE(74), 

Tripos Sybyl(86) and Accelrys' Discovery Studio(73). Three of the most common methods for 

predicting similarity are fingerprint(87), shape-based(88) and pharmacophore(71) methods. 

These methods are commonly used in virtual screening when a known active compound has been 

identified. Fingerprint methods are relatively simple and usually two-dimensional. Each 

molecule is assessed for a number of atom and bond connectivities. Each of these connected 

units is termed a bit/key and the combination of bits/keys that are present in a given molecule is 

its fingerprint. Two molecules with similar fingerprints have similar atoms in similar bonding 

environments and are likely to bind in similar ways to a protein target. There are a number of 

fingerprinting techniques as well as a number of atom-typing schemes and close reading of the 

current literature is recommended before selecting a method, as this is still a rapidly developing 

field(89). Recent analysis has shown that atom-type based radial fingerprints perform well(90) 

but other work suggests that fingerprints based on physicochemical properties or 

pharmacophores may perform better(91). Different fingerprinting methods can yield very 

different similarities and thus an exact comparison with literature is not always appropriate. 

There are also a number of similarity/difference metrics(92) and, whilst the Tanimoto metric is 

most commonly used, close reading of the current literature is again recommended. The 

molecules in Figure 2 were analyzed using radial fingerprints based on daylight atom types using 

Schrodinger’s Canvas software and Tanimoto similarity scores were then generated. As can be 

seen, molecule with a high similarity such as A and B are very similar and would likely give 

similar assay results, whereas molecule A and D are significantly different and should ideally 

both be tested in a frontline assay. Shape based methods compare molecules by analyzing 

whether they have the same shape and electronic form. This is implemented in Openeye's ROCS 

and EON software(76), which is widely used and is freely available to non-commercial groups 

working toward public disclosure(93). Pharmacophore methods have the obvious advantage of 

including the three dimensional geometry of the molecules. As noted, chemical similarity is a 
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very important concept in assessing chemical diversity. Whilst three dimensional methods have 

the potential to provide a much more accurate model of molecular similarity, there is great 

difficulty in applying them when the bioactive conformation is unknown, as is the case in 

diversity analysis. Thus, two dimensional methods such as fingerprinting remain the tool of 

choice at present. 

Rational Selection. Once a set of compounds has been analyzed on the basis of similarity it is 

possible to select a diverse set of compounds. In some cases it is possible to consider the average 

similarity between compounds and optimise this as an objective function. However, this requires 

generation of an N by N similarity matrix, which may become prohibitively large as N 

increases(94). Heuristic clustering methods are thus more commonly used(94). Such methods 

include k-means clustering(95), sphere exclusion(96), directed sphere exclusion(97) and 

maxmin(98). The aim of such methods is that, for each selected molecule, no similar molecules 

are then selected. This is illustrated using a two dimensional representation for a simple sphere 

exclusion method in Figure 3. The centroid molecules R, B, G and Y represent all the molecules 

within a similarity of greater than 0.2. Iterative selection in this chemical space will finally 

encompass all molecules. A secondary aim of compound selection is to pick clusters of two or 

more structurally similar compounds in each cluster, such that the initial assay results 

immediately provide some QSAR data to inform decision-making. In many cases the aim of 

compound selection is to augment an existing compound collection. In this case, the existing 

compound structures can be used as an input to the diverse selection algorithm. This can be used 

to select new compounds that “fill the gaps” in chemical space. Despite this usefulness of 

diversity selection methods, the use of virtual screening methods should always be considered in 

a resource constrained environment, with sufficient knowledge of the protein target and its 

structure. Both molecular docking(99) and pharmacophore analysis(100) can improve hit rates in 

HTS assays and are commonly used.  

In summary, the process of selecting a representative subset of compounds from a large 

collection relies heavily on the ill-defined concept of molecular similarity. However, the concept 

is vital as it allows lead molecules to be identified at reduced cost and effort through hit 

identification and explosion. 
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Conclusions 

Shrewd selection of screening compounds is one of the most vital enabling steps in the drug 

development process. There are no strict rules, only rules of thumb. No compound filters are 

globally applicable and no diversity metrics or selection methods can be proven as optimal. 

However, misapplication of filtering can reduce chemical diversity within a project and preclude 

many novel discoveries. Conversely, careful filtering reduces the risk of false positives and 

downstream ADMET failures, whilst sensible compound selection can yield libraries that cover 

larger regions of chemical space and increase true positive hit rates. ADMET concerns may not 

be as important for chemical probes developed in academic groups, but solubility, cell 

permeability and potential chemical reactivity are all still important considerations and chemical 

diversity is still highly desirable. There are numerous sources of compound interference, which 

plague HTS assays. However, recent large-scale analyses have identified molecular scaffolds 

that appear as frequent hitters in numerous assays. The resultant data is very useful and should be 

incorporated either into library filtering or triaging of assay data. However, if every group used 

the same filters then every group would test similar compounds and many useful molecules 

could be missed. Large screening libraries in industry include a substantial fraction of 

commercially available compounds. Thus, if an academic group sources from commercial 

vendors and uses traditional industry filters then they will develop smaller relatives of the big 

industrial libraries with little or no chemical novelty. It may thus be advisable for academics to 

consider synthesizing or purchasing molecules in untapped regions of chemical space, 

particularly embodying multiple stereogenic centers, to maximise chemical diversity and 

increase the number of unique chemical entities tested. Diversity should also be maximised by 

considering natural products and biogenic scaffolds, which may show improved ADMET 

properties. At present, commercially available chemical space is heavily skewed toward flat 

compounds with many aromatic rings. Whilst this makes synthesis more tractable, it excludes 

many sources of chemical diversity and shifts screening libraries away from biogenic scaffolds 

and toward pharmacological risks. These risks have been recently quantified and the results are 

compelling(26). This problem will only be remedied by customers changing their practices to 

incentivise chemical suppliers. 

 A screening library must have the correct balance of molecular weight and logP, tailored to the 

constraints of the assay. Once a true positive hit has been identified, increasing size and 

complexity in tandem with lipophilicity is expected to increase both affinity and specificity. It is 

important to note that the ideal range of chemical and physicochemical properties of an HTS 

library differs when considering different assay platforms or protein targets. An optimal 

screening library for a fragment-based screen or targetting a protein-protein interaction will thus 

be different from a traditional kinase set and should be carefully designed. Due to the economies 

of scale with respect to purchasing a screening library, cost sharing between academic and 

government labs can increase the scope of screening efforts. Some companies may be willing to 

share portions of their screening libraries, in return for IP rights, on projects focused on 

commercially viable, validated targets. With respect to compound selection, there are numerous 

existing methods for measuring chemical similarity and selecting diverse sets of compounds, but 

no ideal metric can exist. Whilst current work has highlighted the best applications of 

fingerprinting, shape-based and pharmacophore methods, these are all evolving fields and no 

technique can be proven superior in all cases. However, compound selection through analysis of 

molecular similarity reduces the size and cost of screening libraries whilst retaining diversity. 
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One question of great importance that has not been addressed in great detail is how many 

compounds need to be tested to ensure a sufficient coverage of chemical space(101). This 

question can be considered by considering the number of lead series desired, the false positive 

rate, the number of molecules assayed per cluster and the hit rate of the primary screen. Such an 

analysis predicts that on average one lead series can be developed from testing approximately 

350,000 diverse compounds in a typical HTS screen(102). This number applies only to leads 

successfully developed into marketed drugs and is thus not appropriate when considering 

chemical probe discovery. However, it is commonly accepted that some targets are more 

druggable than others such that this value can vary greatly and that some screens will yield no 

successful lead series. Due to the importance of HTS in the development of new drugs and 

chemical probes, high-quality screening libraries are a key asset of any research group and there 

are many factors to be weighed. However, each library will be unique and should be suited to the 

particular needs of the screening group. With the rapid increase in the number of purchasable 

molecules, the almost limitless volume of chemical space and the proliferation of HTS groups, 

rational selection of diverse hit-like compounds seems likely to continue as a lynchpin of drug 

development.  
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Tables 

Table 1 - Details of the screening libraries for six chemical suppliers, the ZINC database of 

purchasable molecules and the Drugbank database of experimental drugs. All physicochemical 

properties were generated with Qikprop and filtering was performed with Canvas.The compound 

collection refers to the subset of molecules that was analyzed from each source. 

Compound 
Source 

Compound 
Collection 

URL 
Number Of 

Compounds 

% 
Lipinski 
Passes 

% 
REOS 

Passes 

Asinex 
Gold and Platinum 

Collections 
http://www.asinex.com 364407 79.6 73.0 

Chembridge 
Express Pick 

Library 
http://www.chembridge.com 442051 84.0 66.6 

ChemDiv 
Discovery 
Chemistry 

http://www.chemdiv.com 789603 73.8 72.1 

Enamine HTS Collection http://www.enamine.net 1116406 90.7 79.6 

Life 
Chemicals 

Stock http://www.lifechemicals.com 327211 84.9 76.6 

Vitas M Labs HTS Stock http://www.vitasmlab.com 476184 75.1 65.8 

Drugbank All Drugs http://www.drugbank.ca 4886 71.4 51.7 

Zinc 
Purchasable 
Compounds 

http://zinc.docking.org 18671085 87.2 73.1 

 

  

http://www.asinex.com/
http://www.chembridge.com/
http://www.chemdiv.com/
http://www.enamine.net/
http://www.lifechemicals.com/
http://www.vitasmlab.com/
http://www.drugbank.ca/
http://zinc.docking.org/
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Table 2 - Details of physicochemical property filters to mark drug-like and lead-like 

compounds for screening libraries. LTE stands for less than or equal to.  

 MW 
PSA 
(Å

2
) 

HBA HBD logP 
Rotatable 

Bonds 
# 

Atoms 
Charge 

Lipinski 
(1997) 

LTE 500  0 to 10 0 to 5 LTE 5.0    

Ghose 
(1999) 

160 to 480    -0.4 to +5.6  20 to 70  

Oprea 
Drug-Like 

(2000) 
  2 to 9 0 to 2  2 to 8   

Egan 
(2000) 

 LTE 130   -1.0 to +5.8    

Walters 
(2000) 

200 to 500 LTE 120 0 to 10 0 to 5  0 to 8 20 to 70 -2 to +2 

Oprea 
Lead-Like 

(2001) 
LTE 450  0 to 8 0 to 5 -3.5 to +4.5    

Veber 
(2002) 

 LTE 140    0 to 10   

REOS 
(2002) 

200 to 500  0 to 10 0 to 5 -5.0 to +5.0 0 to 8  -2 to +2 

Martin 
(2005) 

 LTE 150       
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Table 3 – Percentage of compounds failing common drug-like filters for unfavourable 

physiochemical properties and unwanted substructures for the six combined chemical supplier 

libraries, the ZINC database of purchasable molecules and the Drugbank database of 

experimental drugs. All physicochemical properties were generated with Qikprop and filtering 

was performed with Canvas. 

 

 Combined Suppliers Drugbank ZINC 

clogP > 5 15.8 7.0 10.7 

HBA > 10 3.8 23.0 6.7 

HBD > 5 0.0 13.1 0.1 

MW > 500 4.9 13.3 1.7 

PSA > 150 1.8 22.0 3.3 

Rotatable Bonds > 10 1.5 20.3 2.5 

Isolated Alkene 9.1 12.3 8.7 

αβ-Unsaturated Carbonyl 8.5 8.5 6.9 

1,2-Dimethoxy 7.6 6.0 7.6 

Nitro 7.4 6.6 6.5 

Acylhydrazide 4.0 4.6 4.1 

Aminothiazole 4.0 4.8 3.1 

Thiourea 3.3 4.3 1.6 

Anthracene/Phenanthrene-like 3.1 5.9 1.2 

Unflanked Pyridyl 3.1 5.9 2.5 

Acetal 2.7 13.0 2.0 

Methylene-Dioxy 2.3 4.6 1.5 

Aliphatic Ketone 2.1 10.6 2.0 

1,2 dicarbonyl 1.6 5.6 1.0 

1,4-dimethoxy 1.5 4.5 1.6 
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Figure Legends 

 

Figure 1 - Chemical structures used in compound filtering. Chemical structures of functional 

groups commonly used to remove compounds from consideration in HTS assays. The functional 

group name and SMILES/SMARTS string used in the filter are reported. 

Figure 2 – Example of similarity between compounds. Four compounds and the Tanimoto 

similarity between them. The compounds were assigned radial fingerprints using Schrodinger's 

Canvas software at 64-bit precision using daylight invariant atom types.  

Figure 3 – Clustering of compounds in chemical space. A two dimensional representation of 

chemical space being partitioned into clusters of similar compounds using a simple sphere 

exclusion method. 
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