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Abstract: Protein–protein interactions (PPIs) are tremendously important for the function of many
biological processes. However, because of the structure of many protein–protein interfaces (flat,
featureless and relatively large), they have largely been overlooked as potential drug targets. In this
review, we highlight the current tools used to study the molecular recognition of PPIs through the
use of different peptidomimetics, from small molecules and scaffolds to peptides. Then, we focus on
constrained peptides, and in particular, ways to constrain α-helices through stapling using both one- and
two-component techniques.

Keywords: protein–protein interactions; peptidomimetics; proteomimetics; macrocycles; stapled peptides

1. Introduction

Protein–protein interactions (PPIs) are well-recognised as mediators of a plethora of processes
in biological systems and are vitally important in the progression of many disease states [1–3].
There are estimates of between 130,000 to 650,000 relevant interactions in the human protein–protein
interactome [4–6]. Many of these interactions are underexplored and so represent an emerging area for
drug discovery. Through the study of PPIs, targets that were previously overlooked have now come to
light as significant targets of interest.

This review will focus on the methods used to target PPIs, from small molecules, peptidomimetics
and peptides and, in particular, constrained peptide macrocycles and stapled peptides.

2. General Structure of PPIs

The development of new therapeutics which target PPIs is inherently challenging for medicinal
chemistry and chemical biology [7]. Most interactions are dynamic and occur over a relatively large
protein contact surface area (1500 to 3000 Å2) [8,9], much larger than the average contact area needed
for small molecule binding, which is thought to be approximately 300 to 1000 Å2 [10]. Additionally,
PPIs have generally been thought of as undruggable because many protein–protein interfaces lack the
obvious pockets for binding small molecules [11]. Constitutive PPIs tend to be predominantly driven
by hydrophobic effects [1], while transient PPIs consist of more polar residues [12]. Proteins which
have transient PPIs can often have more than one binding partner from a much larger protein family.
A well-known example comes from the Bcl-2 family of proteins, where prosurvival members of the
family interact with the proapoptotic BH3 (Bcl-2-homology-3)-only members [13].

While a PPI is usually large in size, not all residues contribute to binding equally and, in fact,
only a small number of crucial amino acid residues within the PPI are important in delivering the vast
majority of the binding affinity and specificity [14–18]. These regions have been termed ‘hot spots’.
Many of these have been elucidated through systematic alanine scanning mutagenesis, where a hot

Molecules 2018, 23, 959; doi:10.3390/molecules23040959 www.mdpi.com/journal/molecules

http://www.mdpi.com/journal/molecules
http://www.mdpi.com
https://orcid.org/0000-0001-5519-9158
https://orcid.org/0000-0001-7355-2824
http://www.mdpi.com/1420-3049/23/4/959?type=check_update&version=1
http://www.mdpi.com/journal/molecules
http://dx.doi.org/10.3390/molecules23040959


Molecules 2018, 23, 959 2 of 18

spot residue is established if, when that residue is mutated to an alanine, the binding energy difference
is more than 2 kcal/mol [15]. Hot spots were found to be rich in residues such as arginine, tryptophan
and tyrosine.

Although PPI hot spots are presented on the protein surface, these residues are generally not
contiguous within the protein sequence as a result of protein folding. Many hot spots are associated
with protein secondary structure motifs such as the α-helix, β-sheet and β-turn. Of these secondary
structures, the α-helix has captured the interest of researchers. This is because α-helices comprise
approximately 60% of all secondary structures in protein complexes [18,19]. Additionally, α-helices
have been shown to mediate a large number of key therapeutically relevant PPI interfaces, of which
60% bind to one face of the helix [19]. At the protein–protein interface, α-helices tend to bind into the
groove of their binding partner, and as a result, helix mimetics have been of great interest. A number of
methods exist which aid in the discovery of new PPIs and facilitate the discovery of molecules to bind
PPIs, including high throughput screening [20], phage display [21], crosslinking [22], computational
studies [23] and structural based design, to name a few.

3. Methods for Targeting PPIs

3.1. Small Molecules and Peptidomimetics

Traditionally, peptidomimetics have been subdivided into three types [24–26]. Type I mimetics are
short peptides which mimic the secondary structure landscape of the parent peptide, with minor alterations
to the sequence. Type II mimetics are non-peptidic functional molecules based on a scaffold that does not
mimic the peptide secondary structure. Type III mimetics are also non-peptidic molecules and these match
the spatial topology of key interaction motifs of the parent peptide. More recently, these categories have
been further improved by Pelay–Gimeno et al. into four different classes: Classes A–D, where Class A
mimetics are most similar to the parent peptide, while Class D mimetics show the least similarities [26].
Class A mimetics, like Type I mimetics, are peptides with minimal alterations to the peptide side chains
and backbone. Class B mimetics, while still peptidic in nature, include much more dramatic backbone and
side chain alterations (e.g., peptoids, β-peptides and α/β-mixed peptides). Class C mimetics are similar
to Type II mimetics and involve a scaffold, from which substituents that are analogous to the peptide side
chains are projected. Finally, Class D mimetics are those that mimic the mode of action of a peptide without
a direct link to the peptide side chains.

Classical medicinal chemistry uses small molecule drugs which bind either into the active
site of a protein, or at an allosteric position. However, as alluded to earlier, PPIs tend to be
large and challenging to target with small molecules. Nevertheless, a number of small molecule
PPI inhibitors have successfully been developed; including ABT-737 and ABT-236, which both
inhibit the Bcl-xL/Bak PPI (Abott Laboratories) [27,28], along with the Nutlin family of small
molecule compounds (Hoffmann-La Roche) and the benzodiazapinediones (Johnson & Johnson
Pharmaceuticals), which inhibit the p53/mDM2 PPI [29,30] (Figure 1). These are all examples of
Class D mimetics.

Class C mimetics include scaffolds such as terphenyls, which were established by Hamilton and
colleagues, and mimic one face of an α-helix in order to target PPIs [31]. They developed a series of
trisubstituted 3,2′,2”-terphenyl compounds, the aryl cores of which adopt a staggered conformation (dihedral
angles, 59.1◦ and 120.7◦) and thus mimic the i, i+3, i+4 and i+7 residues of a helix through the ortho positions
of the scaffold [31]. In addition, other scaffolds such as terephthalamides [32], 4,4′-dicarboxamines [33],
5-6-5-imidazole-phenyl-thiazoles [34], trispyridylamines [35] and enaminones [36] have been developed
as extended α-helix mimetics by the Hamilton group. Other groups have reported their own scaffolds to
mimic amino acid side chains on α-helices. These scaffolds include picolinamides [37], pyridazines [38,39],
phenyl-piperazine-triazines [40], pyrazines [41], 3-O-alkylated oligobenzamides [42] and 2-O-alkylated
oligobenzamides [43] (Figure 2), and mimic one face of the helix. Notably, the Wilson group were the first to
describe a solid-phase synthesis for an α-helix mimetic with N-alkylated oligobenzamides, which act as
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inhibitors of p53/hDM2 [44,45]. The same group were also able to show orthogonal functionalisation of
these non-peptidic helix mimetics through a copper-mediated ‘click’ chemistry approach [46].

Peptidomimetics that mimic more than one face of an α-helix have also been explored. Both the Ahn
and Hamilton groups converted a single faced bis-benzamide scaffold into a dual faced helix peptidomimetic
(Figure 3) [47,48]. Additionally, an amphiphilic α-helix mimetic based on a benzoylurea scaffold has been
reported by Thompson and Hamilton [49], while Lee et al. developed two-face amphipathic α-helix
mimetics based on a triazine-piperazine-triazine scaffold [50] (Figure 3). The triazine-piperazine-triazine
peptidomimetics showed improved binding affinity to Mcl-1 in a fluorescence anisotropy competition assay
compared to a fluorescein labelled BH3 peptide. More drug-like proteomimetics based on a purine scaffold
have also been reported by Lanning et al. (Figure 3) [51]. A number of other non-peptidic scaffolds have
also been reported which mimic more than one face of the helix and a review of these has been published
by Lanning and Fletcher [52].

Figure 1. (A) Classic small molecule inhibitors of protein–protein interactions (PPIs) include the Nutlin
family of small molecules (Nutlin-1, Nutlin-2 and Nutlin-3) and benzodiazepinediones; (B) crystal
structure of Nutlin-2 bound in the p53 binding pocket of MDM2 (PDB 1RV1), overlaid with a p53
helix (PDB 1T4F) (left) and showing the overlap between Nutlin-2 and the side chain residues of p53;
(C) crystal structure of benzodiazepinedione-1 bound in the p53 binding pocket of MDM2 (PDB 1T4E),
overlaid with a p53 helix (PDB 1T4F) (left) and showing the overlap between benzodiazepinedione-1
and the side chain residues of p53.
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Figure 2. Examples of the proteomimetic scaffolds used to target PPIs. R groups mimic peptide side
chains of hot spot residues.

Figure 3. Examples of multi-faced proteomimetic scaffolds used to target PPIs. R groups mimic peptide
side chains of hot spot residues.

3.2. Peptides to Target PPIs

Short peptide sequences are associated with a number of problems. They often lack the ability
to fold into their bioactive conformation because of an entropic penalty for folding and they are
susceptible to faster rates of degradation due to proteolysis. Overcoming these difficulties frequently
involves one or more of the following: incorporation of non-native amino acids [53], D-amino
acids [54–57], and β-amino acids [58]; retro-inverso peptides [59]; changing the backbone (through
N-methylation [60], or the introduction of amide bond isosteres [61]); and cyclising strategies [62–65].
Non-native amino acids confer stability as a result of the proteolytic machinery in the cell being ill
equipped to deal with unnatural amino acids [66]. Unnatural amino acids such as α-aminobutyric
acid (Aib or α-methylalanine) can promote secondary structure formation (310-helix), while other



Molecules 2018, 23, 959 5 of 18

α,α-disubstituted amino acids, such as α-pentenylalanine, can help form an α-helix, owing to the
Thorpe–Ingold effect [67]. Incorporation of D-amino acids also inverses the stereochemistry at the
α-carbon of the peptide backbone, and a fully retro-inverso peptide not only inverts the chirality of
the peptide but also reverses its sequence. This in turn gives a peptide with the side chains projected
in the correct orientation [68]. Backbone modifications such as N-methylation can alter the cis–trans
configuration of the amide bond, affecting the conformational freedom of adjacent amino acids [26].
It also alters the hydrogen-bond pattern of the peptide through reducing the number of hydrogen
bond donors. Other backbone modifications, such as the use of foldamers, β-peptides and peptoids
can additionally infer both proteolytic and metabolic stability [69,70]. Cyclic peptides have improved
metabolic stability compared with their linear counterparts and cyclisation introduces conformational
constraints that can reduce the flexibility of the peptide, allowing for a reduced entropic cost upon
binding, thus increasing binding affinity [66,71]. A few of the above peptide modifications will be
discussed further in the following Sections.

3.3. Macrocyclic Peptides

Macrocyclic scaffolds are found in many natural products such as cyclosporine A, sunflower
trypsin inhibitor (STF-1) and Rhesus θ defensin 1 (RTD-1); as a result, synthetic macrocycles have been
widely investigated in the development of novel therapeutics and chemical probes [26,72,73].

A number of pharmaceutical companies have macrocyclic peptides currently undergoing clinical
trials for a range of targets. Examples include Polyphor, who have two drugs in clinical trials,
Balixafortide (POL6326) (Figure 4) and POL6014; Bicycle Therapeutics, with bicyclic peptide BT1718;
Apeptico, with Solnatide (AP301) (Figure 4); Ra Pharmaceuticals with RA101495; and Aileron
Therapeutics, with two drugs, ALRN-5281 and ALRN-6924, also in clinical trials.

Figure 4. Two examples of macrocyclic peptides (Class A PPI inhibitors) which are currently
undergoing clinical trial studies as PPI inhibitors: Balixafortide (POL6326) from Polyphor and Solnatide
(AP301) from Apeptico.

Balixafortide is a bicyclic peptide that is a potent and selective agonist of the chemokine receptor
CXCR4. In combination with eribulin (Halaven®), balixafortide has successfully completed a Phase 1
study for the treatment of advanced metastatic breast cancer and other oncology indications [74].
The structure of POL6014 has not yet been released, but the successful conclusion of its Phase 1 clinical
study has recently been announced for the treatment of cystic fibrosis, non-cystic fibrosis bronchiectasis
and alpha 1 antitrypsin deficiency [75].

BT1718, developed by Bicycle Therapeutics, has recently entered a Phase 1/2a study in solid
tumours. It is a constrained bicyclic peptide which binds to membrane type 1-matrix metalloprotease
(MT1-MMP; MMP14) and is a first-in-class bicyclic drug conjugate [76]. Developed by Apeptico,
Solnatide has continued into Phase 2 clinical trials after a successful first-in-man study to assess the
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safety of the orally inhaled aerosol [77]. It is a cyclised peptide of the lectin-like domain on human
TNF-α and an activator of ENaC-mediated Na+ uptake for the treatment of pulmonary permeability
oedema in acute respiratory distress syndrome (ARDS). Now in Phase 2 clinical trials for paroxysmal
nocturnal hemoglobinuria, RA101495, developed by Ra Pharmaceuticals, is a potent cyclic peptide
inhibitor of complement component 5 (C5) [78].

A subset of macrocycles is concerned with conformationally constraining α-helices. This practice
has been termed peptide stapling. Stapled peptides have recently come of age, with two compounds
developed by Aileron Therapeutics in clinical trials.

4. Stapled Peptides

In general, the entropy of folding is the limiting factor for short isolated peptide sequences to fold
into their bioactive conformation. Consequently, the stabilisation of these peptides has been studied
extensively. However, additional factors such as the entropy contribution made by the desolvation
of water molecules has also been shown to be important [79]. Synthetically constraining a peptide
can reduce the entropy of folding, however, it may also restrict the peptide from folding into the
correct conformation for binding [79,80]. Even so, for α-helical peptides, ‘stapling’ has come to the
forefront as a viable method of introducing constraints, where the side chains of two residues in the
peptide are covalently linked to form a macrocycle. Peptide stapling can increase α-helical character,
protease stability, binding affinity and promote cell penetration when compared to their unmodified
counterparts [81].

There are an abundance of different techniques that have been developed for peptide stapling.
The different methods for peptide stapling can be divided into two subsets: one-component stapling,
where the side chains of two amino acids are directly linked; and two-component stapling, where the
sides chains of two amino acids are connected through a linker.

4.1. One-Component Stapling

One-component stapling methods have been developed to allow the use of both natural (e.g., lysine,
glutamic acid etc.) and non-natural (e.g., alkenyl and azido amino acids) amino acids as a stapling anchor.
The earliest form of stapling did not involve covalent linkage, but instead used salt bridges between
complementarily charged residues, particularly lysine and glutamic acid residues [82]. However, with these
peptides, the environment the peptide occupies plays a role in inducing the peptide conformation, thus care
must be taken to control both pH and salt concentrations [83]. Since salt bridges, a number of other
one-component stapling techniques have been reported, including lactamisation [84–86], triazoles [87] and
all-hydrocarbon stapling [79,88–93], to name a few.

Rosenblatt and co-workers introduced the idea of lactam staples, where the proteinogenic amino
acids lysine and aspartic acid at i and i+4 positions on a short sequence of parathyroid-hormone-related
protein (PTHrP) were cyclised [84]. Lactamisation has since been systematically studied by Fairlie and
co-workers on simple pentapeptides, where they showed that a single lactam bridge could effectively
stabilise short α-helical peptides, while also being aqueous stable [94]. Additionally, they demonstrated
the use of consecutive lactam bridges to constrain α-helices [95]. With these data in hand, Fairlie
and co-workers applied this stapling strategy to a number of biologically relevant targets, including
doubly lactam-stapled peptide analogues of hormone nociception, which induced greater levels of
ERK phosphorylation in cells and thermal analgesia in mice [96].

‘Click chemistry’ was introduced by Sharpless in 2001 [97], and from the initial use of the Huisgen
1,3-dipolar cycloaddition on peptides by Meldal and co-workers, the copper catalysed azide alkyne
click (CuAAC) reaction has catapulted into everyday use [98]. A notable one-component example
of CuAAC comes from Kawamoto et al. who carried out a systematic study on the effect of linker
length, position of the staple within the peptide and the effect of stereoisomers for the residue used for
stapling [87]. They found that for an i,i+4 triazole stapled peptide, the best binding affinity peptide for
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targeting the β-catenin/B-cell CLL/lymphoma 9 (BCL9) PPI, was where the residues used for stapling
were L-amino acids. This peptide also gave the greatest increase in helicity.

An interesting example of one-component stapling comes from Yamagishi et al. who reported
a cyclisation strategy which involved the oxidative coupling of 5-hydroxyindole and benzylamine,
which were introduced into the peptide through non-proteinogenic amino acids [99]. The cyclisation
of a non-fluorescent peptide occurred rapidly at room temperature after the addition of K3Fe(CN)6 to
generate a conjugated, heterocyclic linker structure which conferred fluorescence. Here, the linker not
only acts as a peptide constraint but also as a fluorescent probe.

The current ‘gold standard’ for one-component stapling is the all-hydrocarbon staple, pioneered
by Miller, Blackwell and Grubbs in the late 90s [100–102]. The field has since erupted through the work
of the Verdine and Walensky groups [81,88,92,103–105]. All-hydrocarbon stapling relies on using the
ruthenium catalysed ring closing metathesis reaction to form the staple macrocycle. Unnatural alkenyl
amino acids which can be difficult to synthesise are also required for this ring closing strategy [106].
These are likely to be α,α-disubstituted amino acids, though some examples have been reported
using monosubstituted alkenyl amino acids [107,108]. The most widely used all-hydrocarbon staple
constrains α-helical peptides across a single turn (i,i+4). However, i,i+3 [90,109] and i,i+7 [89] have
also been reported, as well as doubly stapled [110] and stitched stapled peptides [111].

The importance of all-hydrocarbon stapling has recently been highlighted as the result of
ALRN-5281, a long-acting growth-hormone-releasing hormone agonist for the treatment of orphan
endocrine diseases, successfully completing its Phase I clinical trial [112]. Additionally, Aileron
Therapeutics also have another stapled peptide drug (ALRN-6924) in Phase I clinical trials for solid
tumours and in Phase II trials for lymphoma and peripheral T-cell lymphoma [113,114]. ALRN-6924 is
a stapled peptide designed to disrupt integration between the p53 tumour suppression protein and
inhibition by murine double minute 2 (MDM2) and murine double minute X (MDMX). The results for
these studies should be released in July 2018.

4.2. Two-Component Stapling

A number of two-component stapling techniques have been reported including photocontrollable
macrocycles [115–118] and the use of bridging motifs like alkyl chains [119,120], aromatics [120–124],
perfluoroaryl [125] and tetrazine [126]. These examples have been carried out using the natural
amino acid cysteine as an attachment point (Figure 5), but other examples have also been reported for
two-component stapling using lysine and tryptophan residues [127,128] and non-native amino acids
containing alkyne functionalities [129–133]. Cysteine has been exploited for two-component stapling
partly due to the high nucleophilicity of the sulfhydryl group which can readily undergo alkylation
with suitable electrophiles such as α-halocarbonyls and Michael acceptors [134]. An excellent review
on stapling using cysteine crosslinking has been published by Fairlie and de Araujo [135].

The ability to control the activity of a peptide through an external stimulus, such as light, has led to the
development of photocontrollable macrocycles, introduced by the Woolley group [115–117]. Photosensitive
azobenzene linkers were installed to give macrocycles across the i,i+4, i,i+7 or i,i+11 positions on the peptide
sequence. The trans-to-cis isomerisation of the azobenzene linker produced a conformational change in the
peptide to give either an α-helix or random coil. Furthermore, the Woolley group employed a structurally
rigid ethylene-based linker to stabilise across i,i+11 (three turns) of an α-helix [136]. For a comprehensive
review on the azobenzene photocontrol of peptides and proteins, see Mart and Allemann [137].

DeGrado and Greenbaum showed that an aromatic linker such as dibromo-m-xylene reacts with
the sulfhydryl cysteine side chain in a simple one-pot reaction, both in solution and on solid support to
constrain an α-helical peptide and increase its helicity [120]. This strategy was applied to the stapling
of calpain probes to mimic a natural PPI of cysteine proteases with good potency and selectivity.
Another S-alkylation approach comes from Micewicz et al., who synthesised analogues of a potent
dual-specific antagonist of p53–MDM2/MDMX interactions, PMI-N8A [124]. They showed the stapled
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peptide to be cell-permeable and displayed potent anticancer activity at a low dose (0.3 mg/kg) against
a human colorectal cancer cell line.

Figure 5. Some of the reported two-component cysteine cyclisation strategies, where R = different
functional tags and handles.

Bicyclic peptides linked through cysteine residues are of great interest, especially with the clinical
trial of a bicyclic peptides developed by Bicycle Therapeutics. The initial work on this strategy was
carried out by Heinis and Winter, where a series of peptides with three reactive cysteine residues,
spaced by six amino acids, were synthesised and fused to the phage gene-3-protein. The peptides
were then conjugated with 1,3,5-tris(bromomethyl)benzene under mild aqueous conditions to generate
a series of bicyclic peptides covalently attached to the mesitylene core [138]. This approach has been
used to synthesise a potent and selective inhibitor of human urokinase-type palasminogen activator
(uPA) [139]. Apart from tris(bromomethyl)benzene, a number of other small molecule linkers with
thiol-reactive groups have been reported [140].

Dichloroacetone (DCA) was incorporated as a staple linkage by Assem et al. to enhance helical
secondary structure [141]. Following stapling, the ketone moiety of the linker was then modified
with a diverse range of molecular tags (fluorophore, CPP etc.) through oxime ligation. Additionally,
a second macrocycle was formed through the cyclisation of an N-terminal aminooxy group with the
acetone linker.

A rapid and reversible two-component stapling methodology, using cysteine or homocysteine
as the peptide anchoring amino acids, has recently been reported by Grison et al. [142]. The staple is
formed through employment of a dibromomaleimide, which can be further functionalized by ‘click’
chemistry. This reversible approach has been hypothesised to allow for the delivery of a peptide-based
reagent into the cell, where the constraint can be removed, and thus the peptide is less readily
transported out of the cell [142].
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Tetrazine staples were installed as a constraint by Brown and co-workers through the use
of a dichlorotetrazine linker reacting with two cysteine residues between two and 27 residues
apart [126]. Additionally, they functionalized the linker following macrocyclisation with the use
of an octyne-derived fluorescein probe through an inverse-electron demand Diels-Alder reaction.
Another SNAr linker has been reported by the Pentelute group using a perfluoroaryl linker, which has
the benefit that the peptide is adorned with NMR-detectable 19F atoms which is a useful analytical
tool [125]. In addition, the Pentelute and Buchwald groups have expanded on the SNAr bioconjugation
methodology with the use of a bis-palladium complexed benzophenone [122].

Photoinduced coupling of cysteines and alkenes, also known as thiol-ene coupling, has recently
been investigated by Wang and Chuo using an α,ω-diene, while using an initiator with irradiation
at 365 nm to install a thioether linkage across i,i+4, i,i+7 and i,i+8 positions [119]. More recently,
N-phenyl-divinylsulfonamides have been investigated for two-component cysteine stapling by Li et al.,
where they treated oxytocin with p-CH3O-N-phenyldivinylsulfonamide linkers functionalized with
different handles [143].

An intramolecular tryptophan condensation approach for peptide stapling was recently reported
by Hui et al. using an aldehyde under mild acidic conditions [128]. The tryptophan residues were
linked at the C2 position of the indole to give a variety of i,i+n (where n = 1,2,3 or 4) stapled peptides.

As alluded to in some of the examples above, unlike one-component stapling techniques,
two-component stapling also offers the ability to create a diverse series of peptides, by carrying
out a late stage functionalisation through the use of different linkers (Figure 6).

Figure 6. From a single synthesised linear peptide, a large library of functionalized stapled peptides
can be made through the use of a variety of linkers, which can include fluorophores, cell penetrating
peptides and handles for pull down assays.

The Spring laboratory has pioneered a two-component peptide stapling technique based on
the CuAAC reaction, which has been termed a double-click staple, where a bis-alkynyl linker is
reacted with two azido containing amino acids forming two triazoles [129,144]. For this strategy,
a number of different linkers (linear aliphatic and aromatic, Figure 7) have been employed through
the help of molecular dynamics to target a variety of different PPIs. These include helical peptides
to target the p53/MDM2 interaction [129,145,146], non-helical constrained peptides of transcription
factor hepatocyte nuclear factor 1β (HNF1β) to target a key PPI in ovarian cancer [147], a macrocyclic
peptide to inhibit the substrate recognition domain of tankyrase [148], and an i,i+6 stapled helical
peptide to target the genome-stability hub CTF4 [131]. A similar synthetic double-click approach has
also been adopted by the Thurber group, who have reported a stabilised fluorescent GLP-1 receptor
ligand exendin [133,149]. More recently, Pedersen and co-workers reported a third generation CuAAC
stapling and functionalisation strategy which uses a triyne linker to give a double-clicked stapled
peptide, the linker of which can then be further functionalized through another CuAAC reaction [150].
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Figure 7. Examples of linkers that have been used for the two-component copper catalyzed
azide-alkyne double-click reaction.

A copper free biorthogonal double strain-promoted stapling technique was also reported,
which eliminates the need for the potentially toxic copper catalyst [132]. Additionally, the copper-free
strategy allows for in situ stapling to generate a large library of stapled peptides directly in the assay
medium in a 96-well plate.

5. Conclusions

Since the identification of PPIs as potential targets for therapeutics, we have witnessed their
impressive journey to fame, from undruggable targets to being in the spotlight. As a result, studies
into PPI stabilisers and inhibitors have increased significantly.

Although challenging, the use of small molecule PPI inhibitors has become more commonplace.
Classical small molecule and peptidomimetic PPI inhibitors tend to mimic peptide sidechains to take
advantage of the binding affinity of a number of hot spot residues. The cyclisation of peptides to form
macrocycles has proven itself to be a valuable tool in increasing the stability of peptides in cells and in
some cases also increasing the binding affinity of these peptides for their targets.

In an effort to target PPIs, stapled peptides have recently come of age, especially two stapled
peptide drugs going into clinical trials. Although the gold standard for peptide stapling still remains
the all-hydrocarbon staples, more and more stapling techniques are being reported to overcome
some of the pitfalls of the all-hydrocarbon staple, including the need for expensive amino acids
which are synthetically challenging to make and a catalyst requirement. Two-component stapling
strategies are also growing in popularity due to the ease of creating a library of functionalized peptides
through variation of the linker. Additionally, different approaches for stapling cysteine residues have
increased in popularity, helped by the fact that there is no requirement for using non-proteinogenic
amino acids. An important note is that with the wide variety of two-component cysteine stapling
methodologies, a toolbox of linkers is available to use which allows researchers to specifically choose
the most appropriate linkers for the job at hand, whether it be reversible [142], rigid [136], or attached
to a functional handle (e.g., fluorophore, biotin etc.) [141–143]. Overall, in the next few decades,
we foresee a series of interesting solutions to the challenges still faced by those working in the field of
peptidomimetics to target PPIs.
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