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Abstract 

Macrocycles have long been recognized as useful chemical entities for medicine, with naturally 

occurring and synthetic macrocycles clinically approved for use as prescription drugs. Despite this 

promise, the synthesis of collections of macrocycles has been historically challenging due to difficulties 

in the formation of large rings. Diversity-Oriented Synthesis (DOS) emerged in the early 2000s as a 

powerful strategic solution to the construction of diverse molecular libraries. This review details the 

various strategies developed within the field of DOS for the synthesis of macrocycle libraries, utilizing 

modern synthetic methodology to deliver structurally diverse collections of macrocyclic molecules, and 

the exploration of their therapeutic potential. Section 1 of this work details the use of algorithmic 

strategies and is divided into Build/Couple/Pair, Advanced Build/Couple/Pair, Initiate/Propagate/ 

Terminate, Fragment-based Domain Shuffling, Two-directional Synthesis, and Successive Ring 

Expansion. Section 2 covers strategies based on Ring distortion reactions, including Sequential 

Cycloaddition/Fragmentation, Ring Expansions, and Miscellaneous. 
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1. Introduction 
Nature has been an important source of bioactive macrocycles (cyclic molecules containing more than 

12 covalent connected atoms),1–4 compounds which have had a tremendous effect on human lives over 

the recent decades. Currently, there are more than 100 drugs approved or in clinical development 

which involve macrocyclic scaffolds as the bioactive component.4–7 These molecules often display high-

affinity binding and they are able to occupy areas of chemical space that are not normally covered by 

smaller molecules. Macrocyclic compounds are conformationally pre-organized, due to the restricted 

rotation within the molecules, but are not completely rigid and therefore offer lower entropic costs of 

binding1,4,5 without compromising on the flexibility required to form optimal attachments with the site 

of interest.8 This feature has been utilized by nature; a considerable number of natural products, for 

example vancomycin (isolated from Amycolatopsis orientalis9) and erythromycin (isolated from 

Saccharopolyspora erythraea10), contain a macrocyclic core.1–4  



 

Figure 1. Structure of macrocyclic compounds found in Nature. 

Upon binding to a biological target, the molecule is shaped into its bioactive conformer and due to the 

restricted rotation imparted by the macrocycle, fewer possible conformers exist. Lower entropic costs 

and desirable flexibility are not the only benefits of macrocycles in the biomedical field; 

macrocyclization of linear molecules has also been proven to improve the stability of those compounds 

in physiological conditions.1,4,11 Macrocyclic compounds have been shown to be a consistently useful 

source of hits for inhibitor and probe discovery as protein targets become increasingly more 

challenging.12–15 For example, this family of compounds is attractive as it offers opportunities to 

modulate macromolecular processes by inhibition of protein-protein interactions (PPIs).16–20 Protein-

protein binding interfaces are often relatively ‘flat’ and large compared to small molecule binding 

pockets and thus the majority of small molecules are poor inhibitors of PPIs.21 Macrocyclic ‘stapled’ 

peptides have also proven efficient PPI inhibitors,21–23 but this field is beyond the scope of this review.  

Despite their proven utility, the development of synthetic macrocyclic compounds has been hampered 

by cumbersome synthetic approaches and non-drug-like properties.4 Consequently, there is an urgent 

need to develop more cost-efficient and effective synthetic strategies which produce libraries of 

macrocyclic candidates for discovery. The research community has responded by utilizing established 

techniques to synthesize macrocyclic libraries, as well as developing new methods, including DNA-

encoded macrocycle libraries,24–28 cyclic peptide libraries via SICLOPPS29 or enzymatic 

macrocyclisation30 and multicomponent macrocyclization,31–35 which have been extensively discussed 

elsewhere. One technique developed and applied extensively for nearly two decades is diversity-

oriented synthesis (DOS). DOS, conceptualized in the early 2000s by the Schreiber lab,36,37 is a strategy 

driven by the deliberate, simultaneous and efficient synthesis of a library of small molecules with a high 



degree of diversity across their molecular scaffolds and with a high degree of complexity, for example 

presence of chiral centres, which lead to a better coverage of chemical space.  

DOS differs from traditional target-oriented synthesis in that the goal of the synthesis is to generate 

structurally diverse and complex molecules. Structural diversity is generally assessed by four principal 

components:38 1) Appendage diversity (or building-block diversity) - variation in structural moieties 

around a common skeleton; (2) Functional group diversity - variation in the functional groups present; 

(3) Stereochemical diversity - variation in the orientation of potential macromolecule-interacting 

elements; and (4) Skeletal (scaffold) diversity - presence of many distinct molecular skeletons. Of these, 

skeletal diversity is the subject of most focus, because the bioactivity of a compound arises primarily 

from the molecular scaffold and the positioning of any side-groups. A smaller collection with high 

molecular diversity is regarded as superior to a larger, single-scaffold library in terms of diversity of 

biological function due to a broader coverage of chemical space.39,40 Consequently, instead of being 

focused on achieving activity toward a single biological target, DOS syntheses produce broadly diverse 

libraries which result in the possibility of screening a single library against any number of biological 

targets.  

The purpose of this review is to offer a comprehensive overview of the different library design strategies 

within diversity-oriented synthesis that have been utilized to generate libraries of highly diverse 

macrocyclic compounds. This review is limited to DOS approaches to macrocycle synthesis published 

between 2001 and 2017. In many of the studies discussed, traditional and modern macrocyclization 

reaction methodologies were utilized and have been discussed in detail in recent reviews.3,41 Peptide 

macrocyclizations, including ‘stapled’ peptide technologies, were not covered in this work as reviews 

can be found elsewhere.42,43 This review is organized into the following topics: Build/Couple/Pair, 

Advanced Build/Couple/Pair, Initiate/Propagate/Terminate, Fragment-based Domain Shuffling, Two-

directional Synthesis, Successive Ring Expansion, Sequential Cycloaddition/Ring Cleavage, Ring 

Expansion and Miscellaneous.  

 

2. Algorithmic strategies 

2.1. Build/Couple/Pair 
One popular systematic synthetic approach to generating diverse molecular libraries is the three-phase 

build/couple/pair (B/C/P) strategy (Figure 2).44 In the ‘build’ phase, building blocks are synthesized 

which are then connected together intermolecularly in the ‘couple’ phase. The final ‘pair’ phase 

involves an intramolecular functional group pairing45 designed to introduce high molecular diversity. 

This approach is attractive for its modular nature and takes advantage of building blocks containing 

orthogonal chemical handles. To further expand the number and complexity of generated scaffolds, 

variation of building blocks and emphasis on diversity-generating reactions in each phase is crucial. The 

B/C/P algorithm has been a pioneering strategy for the generation of biologically- relevant small 



molecule libraries, which have afforded several bioactive compounds and probes for elucidating 

biological phenomena.46,47,56,48–55 Furthermore, this systematic approach was applied to the synthesis 

of a collection of biaryl and bis(aryl)metal-containing medium rings. 57,58 

 

Figure 2. Illustration of the general build/couple/pair strategy for diversity-oriented synthesis. 
Adapted with permission from Nielsen, T. E.; Schreiber, S. L. Angew. Chem., Int. Ed. 2008, 47, 
48. © Wiley-VCH, 2008.44 

In the context of macrocycle synthesis, the pair phase is the macrocyclization of a linear precursor. Due 

to their versatility and robustness, azide-alkyne cycloaddition (AAC) and ring-closing metathesis (RCM) 

have become popular macrocylization methodologies for use in macrocycle library synthesis.  

 

Figure 3. A general illustration of the two (AAC and RCM) most commonly applied 
macrocyclization strategies. FG = functional group. 

Synthesis of 1,2,3-triazoles was revolutionized by the discovery of the copper-catalyzed azide-

alkyne cycloaddition (CuAAC) to selectively afford the 1,4-disubstituted triazoles under mild conditions 

in 2002, by Meldal and Sharpless independently.59,60 Since its discovery, CuAAC has been used for an 

extensive range of applications in different fields of research.61,62 Three years later, the first selective 

synthesis of 1,5-regioisomer was reported using ruthenium-based catalysts.63,64 This transformation is 

therefore commonly known as ruthenium-catalyzed azide-alkyne cycloaddition (RuAAC) and also found 



to be extensively useful.65 Finally, ring-closing metathesis has been utilized in countless applications, 

but has been especially powerful in macrocycle synthesis due to the work of Grubbs and others on 

ruthenium catalysts.66–68 

 

In their pursuit to generate bioactive macrolides, Schmidt et al.69 devised a strategy by which 

they could selectively integrate multiple substituents with control over stereochemistry (Figure 4, 4-1, 

4-2 and 4-3). In the ‘build’ phase various 5- and 6-membered hydroxyacids were synthesized with 

various substitution patterns and stereochemistry. A subset of these hydroxyacids were coupled to a 

solid-support via their free alcohol group. The library synthesis was initiated by coupling between pairs 

of the hydroxyacids via ester bond formation to provide the linear macrocyclic precursors. Terminal 

deprotection of the ester linkage product revealed both a carboxylic acid and a free hydroxyl group (4-

4). These two functionalities were then paired together under Yamaguchi conditions to afford a library 

of 13- and 14-membered lactones (see, for example, 4-5 and 4-6). It was found that the monomer used 

to connect to the macrobeads had a pronounced influence on the yield of the cyclization step. High 

diversity and broad substitution pattern were achieved by this strategy. 

 

Figure 4. Schmidt et al.69 utilized enantiopure hydroxyacids in an effort to generate macrolides. 

Marsault et al.70 envisioned a B/C/P DOS strategy as a tool to exemplify the synthesis of and to 

introduce diversity to potent macrocyclic peptidomimetic antagonists against the human motilin 

receptor (hMOT-R).71 The compounds were based upon a tripeptide that was linked together via a non-

peptidic tether group through a “head-to-tail” approach (Figure 5). The versatility, low cost and 

commercial availability of both enantiomers of natural and non-natural amino acids quickly generated 

an extensive range of diverse macrocycles. Additional diversity was introduced by varying the ring size 



of the macrocycle by using different tether groups. Taking advantage of solid-phase synthesis and a 

semi-labile thioester, the tripeptides were synthesized (5-1) and a tether was attached to the N-

terminal nitrogen (5-2). The authors employed Fukuyama-Mitsunobu alkylation or reductive alkylation 

to attach the tethers via either hydroxyl groups or aldehyde functionality, respectively. The tether group 

also contained a protected amine which was then revealed to allow macrolactamization, mediated by 

a silver salt. The generated compound library comprised 14- to 19-membered rings, exemplified by 5-

3, 5-4 and 5-5. It was found that linear precursors containing D- and L- amino acids afforded higher yield 

in the macrolactamization step compared to their homochiral counterparts, which was presumed to be 

due to a pre-folded conformer. It was postulated that silver salts both activated the thioester and 

facilitated cyclization by interacting with the amino acid residues to encourage pre-folding of the 

precursor.  

 



  

Figure 5. Generation of peptidomimetic antagonists against hMOT-R by Marsault et al.70 Yields 
in parenthesis indicate overall yield, MP-carbonate = supported resin, PS = polymer-supported. 

Luo and Schreiber used a gold-mediated [3,3]-sigmatropic rearrangement of propargyl 

propiolate (Figure 6, 6-1) to afford the lactone intermediates 6-2 followed by trapping with nucleophilic 

alkenols (6-3) to access building blocks of type 6-4.72 By incorporation of terminal alkenes in the 

appendages of the nucleophilic alcohol, the authors primed the linear ester for a RCM ‘pair’ phase 

macrocyclization. Gold catalysts afford advantages of superior π-acidity, air and moisture stability, 

functional group compatibility and often being able to operate under mild conditions.73–78 Good to 

excellent yields were obtained by RCM conditions to generate 12-, 14- and 15-membered rings with 

varying E/Z ratio (see examples in Figure 6, 6-5 and 6-6). The authors envisioned that having an azide in 

6-3 could undergo intramolecular functional group pairing. 6-7 was treated under thermal Staudinger 

conditions to afford the corresponding iminophosphorane that underwent an intramolecular aza-Wittig 

reaction and subsequently an aza-6π-electrocyclization cascade reaction to form cyclic ketene N,O-

acetals (6-8). The N,O-acetals were ring-opened upon treatment with unsaturated carboxylic acids (6-



9) to afford 2-pyridones. The primed precursors gave rise to 2-pyridone-containing 12- and 14-

membered macrocyclic lactones (see example in Figure 6, 6-10) by the treatment of Hoveyda-Grubbs’ 

2nd generation catalyst, HGII. This strategy provides a high level of modularity and diversity with the 

incorporation of functionalities for further exploration. 

  

Figure 6. A gold-catalyzed [3+3]-sigmatropic rearrangement primed structures for 
macrocyclization Luo and Schreiber.72 PS = polymer-supported. 

Wingstrand et al. identified that macrocyclization could be achieved by bridging a pair of 

nucleophilic groups, such as in a diol, with a bis-electrophilic linker, such as carbonate, sulphite or 

phosphate.79 Starting from a mono-protected diol 7-1 (Figure 7) was functionalized via a lactone 

formation with 7-2 to afford 7-3. The free diol could be extended through the use of a diverse set of 

bifunctional reagents which then allow for macrocyclization via the addition of a linking moiety (7-4 and 

7-5). This linkage diversity strategy was further extended by transforming the diol functionality into the 

corresponding dialdehyde or diiodo compounds. This effectively reversed the polarity of the system, 



which could now be bridged via bis-nucleophilic linkers. Dialdehydes were treated with benzylamine in 

the first reported example of reductive alkylation macrocyclization with the example of 7-6. This 

approach is particularly interesting as it offers the chance to introduce a synthetic handle for further 

elaboration on the amine. The diiodo compound was cyclized using radical chemistry to form a cyclic 

sulfide. 16- and 17-membered macrocycles were successfully synthesized in this work, which was 

further extended the following year to include a greater range of ring sizes and a new diol 

macrocyclization linker based upon malonates.80  

  

Figure 7. Wingstrand et al. integrated different linkages via a reagent-beased approach.79 
PNPCC = p-nitrophenyl chlorocarbonate. 

Grimwood et al. explored the powerful ring-closing enyne metathesis macrocyclization (RCEYM) 

reaction starting from an inexpensive and commercially available glucal building block (Figure 8).81 

Glucal was subjected to various reaction conditions to provide a primary and secondary alcohol, 

which was either alkylated on the primary or secondary alcohol group to afford proparagyl ethers 8-1 

and 8-2. These building blocks were subsequently acylated with unsaturated carboxylic acid 8-3 with 

the outcome of the corresponding esters (8-4 and 8-5). By a calculated incorporation of alkyne and 

alkene functionalities during the ‘build’ and ‘couple’ phases, each linear macrocyclic precursor was 

poised for RCEYM macrocyclization. This was accomplished by Grubbs’ 2nd generation catalyst (GII) 

under an ethylene atmosphere to afford 12- to 18-membered rings, exemplified by 8-6 and 8-7.  

 



  

Figure 8. Modified glucals allowed Grimwood et al. to generate stereochemically-rich 
compounds.81 

Marcaurelle et al. devised a highly robust aldol strategy to increase skeletal diversity of 

macrocyclic compounds by introducing several stereocenters in the ‘build’ phase.82,83 These products 

were coupled to both L- and D-alaninol by amide coupling followed by amide reduction to provide the 

complete matrix of all eight stereoisomers (Figure 9, 9-1). This quickly allowed for the incorporation of 

stereo-structure/activity relationship (SSAR) in the compound collection. Various macrocyclization 

(‘pair’) strategies were employed and by a deliberative incorporation of functionalities in the 

appendages, nucleophilic aromatic substitution (SNAr) macrocyclization strategy was used to generate 

8- and 9-membered rings, CuAAC and RuAAC to generate 12- or 13-membered ring and finally RCM for 

the 14-membered ring. In the latter case, the produced E/Z macrocycles was hydrogenated to afford 

the fully saturated macrocyclic scaffolds. The generated scaffolds were later used to synthesize a 

combinatorial library by ‘post-pair’ modifications as indicated in Figure 9. The scaffold synthesis 

commenced by diversification of the secondary amine and the internal secondary alcohol group (after 

a silyl-deprotection step) with functionalities to promote the macrocyclization (CuAAC/RuAAC and 

RCM). To explore the versatility and efficiency of azide-alkyne cycloadditions, the amine was acylated 

with an azido-containing acid and the alcohol alkylated with propargyl bromide to generate the 1,2,3-

triazole macrocyclic precursor (9-2). The cycloadditions performed well with under CuAAC (PS-CuPF6) 

and RuACC ([Cp*RuCl]4) conditions to afford 13- and 12-membered rings respectively, on multigram 

scale. The authors observed that syn-aldol substrates provided higher yields than anti-aldol substrates 



in the RuAAC cyclization. The opposite was observed for the CuAAC cyclization. For the RCM 

macrocyclization approach, 14-membered rings were obtained by acylation of the amine with both 

enantiomers of 5-nitro-2-(pent-4-en-2-yloxy)benzoic acid and allylation of the secondary alcohol with 

allyl bromide to afford 9-3. The terminal alkenes were joined together under Hoveyda-Grubbs 2nd 

catalyst conditions to provide E/Z macrocycles. A strong stereochemical dependency was observed to 

affect the efficiency of the macrocyclization and modified conditions were necessary to cyclize the syn-

aldol substrates. With the molecular scaffolds in-hand, the combinatorial synthesis on solid support 

was conducted and thereby generated over 30,000 compounds including compounds 9-4 and 9-5. 

Within the 30,000 generated combinatorial compounds are also the 8- and 9-membered ring scaffolds. 

The authors report that they were able to generate 14,400 compounds from only 16 RCM scaffolds. 

The aforementioned hydrogenation of the RCM product revealed an aniline functionality as an extra 

handle for functionalization. Principal moment of inertia (PMI) analysis indicated that the RCM-derived 

compounds provide the most sphere-like molecular shape out of the compounds reported. 

Furthermore, the authors went on to identify several low micromolar HDAC inhibitors (BRD-4805) from 

this library (9-4). 



 

Figure 9. Marcaurelle et al. devised the use of stereochemically dense building blocks for a dual 
stereo-structure/activity relationship (SSAR) study and elaborated with combinatorial library 
generation.83 

This aldol-based B/C/P strategy has laid the ground for an impressive body of work by both the 

Marcaurelle and Schreiber groups on the generation of diverse libraries. In 2011, the Marcaurelle group 

published a new RCM strategy to generate 13- to 18-membered macrolactams. This was mediated by 



the key incorporation of 2-fluoro-4-nitrobenzoic acid which could be functionalized using commercially 

available alkenols via a SNAr reaction.84  

Marcaurelle and Schreiber later provided evidence that the saturated macrocycles showed activity 

against malaria and further SAR studies were performed and found potent hit compound ML238 (Figure 

9, 9-6).85 Recently, the Schreiber group investigated analogues of ML238 to improve its activity and 

pharmacokinetic profile.86  

The aldol-based starting point was further extended into a “head-to-tail” cyclization approach by the 

Marcaurelle group to generate 12-membered rings given by examples 10-4 and 10-5 (Figure 10).87 

Changing to a “head-to-tail” cyclization protocol allowed the authors to include all of the stereocenters 

inside of the generated macrocycle and lower the number of rotational bonds present. Initially, a SNAr 

macrocyclization strategy was attempted, but was unfortunately proven to be low yielding. Therefore, 

the authors reversed the strategy. Thus first attached 10-2 in a ‘couple’ phase to 9-1 with the aim of 

producing compounds with the overall structure of 10-3 and then applied a successful lactam 

macrocyclization approach. These compounds were found to occupy a distinct region in three-

dimensional space. Despite the promising PMI results, the “head-to-tail” products were found to be 

much more rod-like compared to the previous83 RCM-derived macrolactams. In analogy to the previous 

approach, the installed nitro groups were hydrogenated to the corresponding amine and used as an 

anchor group for solid-phase synthesis. A combinatorial library comprised 7,936 12-membered 

macrocycles was generated by ‘post-pair’ functionalization (library examples include 10-4 and 10-5). 



 

Figure 10. Fitzgerald et al. generated 12-membered rings by first a SNA ‘coupling’ phase followed 
by a lactam macrocyclization ‘pair’ step.87 

 

Despite being well represented among natural products and biologically significant molecules, 

polyunsaturated macrolactones represent a significant synthetic challenge due to the high strain 

imparted on the macrocycle by the alkene units. Denmark and co-workers reported an elegant and 

general solution to the synthesis of polyunsaturated lactones based on the intramolecular cross-

coupling of a vinyl iodide to a siloxane-based alkene partner as the key macrocyclization step (Figure 

11).88 The substrates for cross-coupling development were constructed in a build-couple sequence to 

form linear compounds 11-3, which were then subjected to RCM with Schrock catalyst 11-4 to afford 

siloxane cross-coupling precursors 11-5. The pair phase involved Pd-catalyzed intramolecular cross 

coupling to form macrocycles 11-6 and required extensive optimization. Careful control of the solvent 

and fluoride hydration level was required to avoid translactonization to 11-6’ under the basic conditions 

and syringe pump addition of substrate was used to maintain low effective molarity and avoid high 

solvent volume conditions. Under these optimal conditions, a series of 11- to 14-membered, diene-

containing macrocycles (11-6 to 11-11) could be formed. A similar scheme was also applied to the 

synthesis of benzo-fused macrocycle 11-12.  



  

Figure 11. Synthesis of polyunsaturated macrolactones from siloxane 11-5. 

In a series of publications, Zapf et al. at Pfizer described their work towards targeting the 

chaperone heat shock protein 90 (Hsp90) through macrocyclic o-aminobenzamides (Figure 12).89–92 

Inhibition of this protein results in inhibition of cell growth and apoptosis,93,94 and has been exploited 

in cancer therapy.93,95 Zapf et al. explored the incorporation of a tetrahydroindolone moiety earlier 

reported to afford low-nanomolar Hsp90 inhibitors.96 The authors took advantage of the versatile and 

modular Buchwald-Hartwig amination to synthesize a range (11- to 14-membered) of macrocyclic 

Hsp90 inhibitors. The alkene-functionality of the tetrahydroindolone-based starting materials was 

modified to the corresponding alcohols, aldehydes, ketones or carboxylic acids (12-1) by a collection of 

functional group interconversions. In the ‘couple’ phase these functionalities were either used directly 

or further modified to afford linear precursors primed for cross-coupling macrocyclization. Alcohols 

were transformed into the corresponding mesylates and displaced with bis(2-aminoethyl)ether (12-2) 



to provide ether-based tethers. Aldehydes and ketones were reacted with mono-Boc protected 

aliphatic diamines (12-2) under reductive amination conditions, whereas carboxylic acids were coupled 

with diamines to afford the corresponding lactams. Unfortunately, the tertiary amine originating from 

reductive amination was found to contribute negatively to the hERG activity of the compounds, a 

general trend.97,98 As a result of this observation, the tertiary amines were acylated or an alternative 

reductive alkylation strategy was used, whereby an amine was first introduced and then coupled with 

terminal-N-Boc-protected amino carboxylic acids. After deprotection of the Boc group (12-3), the free 

amino group and the 2-bromobenzonitrile were paired under Buchwald-Hartwig amination conditions. 

Following this, bioactive o-aminobenzamides were synthesized by ‘post-pair’ hydrolysis of the aryl 

nitrile (12-4 to 12-9). The rigidity of the tether was found to be crucial for the activity of these 

compounds, as evidenced by the most potent compound in this series, 12-9, containing two, 

rotationally-restrictive, methyl substituents and acylated with alanine.  

 



 

Figure 12. Pfizer scientists described the synthesis of tetrahydroindolone-containing 
macrocycles to target Hsp90 inhibitors.89–92 

In an effort to synthesise analogues of biologically active macrocycles, Heckrodt et al. developed 

a synthetic strategy to efficiently generate 17-membered rings in a small number of steps (see Figure 

13).99 In the ‘build’ phase, peptidic building blocks containing an allyl glutamine derivative (13-1) were 

synthesized with the aim of a RCM macrocyclization strategy. The linear peptides were subsequently 

coupled with O-allyl salicylic acids (13-2) to afford molecules primed for RCM (13-3). Grubbs’ 2nd 

generation catalyst afforded a mixture of E/Z isomers (E/Z  3/1), separable by HPLC (for examples see 

13-4 and 13-5). To extend the molecular diversity of the process, the fully saturated macrocycle was 

obtained by hydrogenation. Alternatively, the alkenes could also be further diversified via 



dihydroxylation. Finally, the use of functional groups incorporated on the salicylic acid pair-partner was 

explored. 

 

Figure 13. Heckrodt et al. devised a B/C/P DOS strategy to provide 17-membered rings by a RCM 
step.99 

Bahulayan and Arun synthesized 12- and 14-membered peptidomimetics using first a multi-

component reaction (MCR) to construct the core scaffold followed by CuAAC macrocyclization 

chemistry.100 The authors aimed to incorporate the β-ketoamide structure into the molecular scaffold 

as it is an important motif in medicinal chemistry. The authors generated 14-membered macrocyclic 

compounds (Figure 14) by stirring bromopropionitrile (14-1), acetyl chloride (14-2), benzaldehyde (14-

3, R1 = H) and propargylated acetophenone (14-4, R2 = OCH2CCH) in the presence of copper sulfate. 

The bromine (14-5) was then substituted for an azide and finally paired with the incorporated alkyne, 

mediated by copper sulfate catalyst, to generate macrocyclic compounds in overall moderate to good 

yields (example 14-6). The highly adaptive MCR allowed for the generation of multiple ring sizes by 

incorporating the alkyne functionality into the aldehyde component (14-3, R1 = OCH2CCH) or by 



changing the length of the nitrile source. Modified yne-aldehyde 14-3 afforded 12-membered rings, 

whereas changing the carbon count of the nitrile provided a broad selection of ring sizes. The authors 

assessed the drug-likeness of the macrocyles by their logP values and found similar values to these seen 

for anti-neoplastics, hypnotic, antihypertensive and anti-infective drug classes. The authors highlighted 

the modularity of this strategy, by synthesizing various ring sizes and demonstrated the ability of the 

method to incorporate several peptide bond bioisosteres.101 

 

Figure 14. Bahulayan and Arun innovatively applied two successive MCRs to increase 
structurally diversity across peptidomimetic macrocycles.100 

In an exploration of inverse-electron-demand hetero-Diels-Alder reactions, Dong et al. first 

coupled a series of 2-oxo-4-aryl-but-3-enoate building blocks to enol ether dienophiles via Steglich 

esterification, followed by intramolecular cycloaddition, to provide a collection of dihydropyran-

bridged macrocyclic molecules (Figure 15).102 The authors explored the effects of varied tether length, 

aryl substitution and position of enol ether substitution on macrocyclization via the SnCl4-catalyzed 

hetero-Diels-Alder reaction using a substrate-based approach. Unfortunately, many reaction conditions 

evaluated produced mixtures due to poorly selective cyclooligomerization reactions. However, when 

conducted at low temperature (-78 °C to -20 °C) with 1 mol% SnCl4, Dong et al. were able to isolate 

single products in moderate yields. In general, the regioselectivity of the Diels-Alder reaction followed 

known trends based on the placement of the enol ether. In the case of terminally substituted enol ether 

substrates 15-1, cyclotrimerization to form macrocycle 15-2 occurred with a short tether (Figure 15A, 



n = 1), between the heterodiene and enol ether dienophile. With tethers of intermediate length (n = 2-

5, 10) the major isolated products were found to be macrocycles 15-3 possessing two dihydropyran 

units resulting from cyclodimerization. Extending the tether further (n = 13) led to the major isolated 

product being that of intramolecular reaction (15-4). 

In the case of internally substituted enol ether substrates 15-5 connected by polyethylglycol (PEG) 

tethers, the regioselectivity of the Diels-Alder reaction was reversed, as expected based on previous 

studies. The hetero-Diels-Alder reactions of shorter-chained substrates (PEG1-2, Figure 15B) favored 

formation of cyclodimerized macrocycles 15-6. Longer tethers (PEG3-5) resulted in intramolecular 

cyclization, forming dihydropyran-containing macrocycles 15-7 as the major isolated products. This 

study demonstrated the subtle interplay between chain length and other parameters in the formation 

of a diverse family of dihydropyran-containing macrocycles.  



  

Figure 15. Synthesis of dihydropyran-containing macrocycles via inverse-electron-demand 
Diels-Alder reactions. 

Harran et al. have investigated the macrocyclization of native peptides with cinnamyl alcohol-

containing templates in an effort to explore the properties such as stability, enhanced membrane 

solubility and membrane permeability. Early reports described the formation of complex mixtures of 

products,103,104 but further studies with a refined template highlighted the power of this concept for 

the construction of diverse macrocyclic products from simple peptide starting materials. Synthesis of a 



library of peptide macrocycles from native, unprotected, linear peptides (Figure 16, 16-1) was 

accomplished with the use of template molecule 16-2, containing an N-hydroxysuccinate (NHS) ester 

handle and a cinnamyl carbonate electrophile.105 Initial N-terminal acylation using the NHS ester 

appended the template to the peptide (16-3). Subsequent treatment of the molecule with Pd0 salt led 

to the formation of a π-allyl-Pd electrophile intermediate (16-4) which was intercepted in a 

macrocylization step to afford compounds of type 16-5, by nucleophiles native to the peptide, including 

phenol, imidazole, aniline and carboxylate functional groups. This method led to the generation of 

diverse macyclic compounds (for example 16-6 to 16-9). 



  



Figure 16. Peptide macrocyclization utilizing template 16-2. Yields in parenthesis refer to those 
of the initial acylation reaction to afford 16-3. 

In line with the previous section, depending on the conditions, selectivity among these nucleophiles 

could be achieved (Figure 17). For example, in the cyclization of templated peptide Ala-Leu-Glu-Tyr (17-

1), subjection to standard conditions of Pd(PPh3)4 in DMF resulted in preferential alkylation of the 

carboxylate side chain of glutamic acid to form 17-2; when Cs2CO3 base was added to otherwise 

unchanged conditions, alkylation of tyrosine was observed, forming 17-3. Similarly, when the peptide 

Leu-Gln-Tyr-His (17-4) was subjected to [PdCl(allyl)]2 and xantphos with no added base, N-alkylation of 

the histidine imidazole occurred furnishing macrocycle 17-5; with added Cs2CO3, tyrosine phenol 

alkylation occurred preferentially, affording 17-6. Notably, for this substrate Pd(PPh3)4 was ineffective, 

presumably due to catalyst poisoning. The macrocyclization proved remarkably effective even with 

longer peptide chains, resulting in 38- and 47-membered macrocycles. The resulting macrocycles 

constructed in this manner were demonstrated to be more stable to in vivo proteolysis, than their linear 

counterparts were.  



  



Figure 17. Selectivity switching in the macrocyclization of templated peptides 17-1 and 17-4. 

 

Applying this same template strategy to peptides containing tyrosine and multiple tryptophan 

residues, the Harran group has also explored the macrocylization chemistry of both Pd-mediated 

cyclization and Friedel-Crafts alkylation, via Brønsted and Lewis-acid mediated cyclizations, on the 

allylic carbonate.106 These reactions produced mixtures of macrocyclic products with different 

connectivities, multiple ring sizes and newly formed C-C, C-O and C-N linkages based on different 

nucleophilic sites in the parent peptides. Building on this work, the Friedel-Crafts alkylation of cinnamyl 

alcohol-containing peptides was further investigated. The authors examined the selectivity and 

electronic tunability of C-C bond formation over tyrosyl C-O bond formation, regioselectivity and 

selectivity between different arene nucleophiles (Figure 18).107 For example, variants of a cis-

aryloxy(thio)proline peptide containing a tyrosine moiety were constructed and their acid-mediated 

reactivity explored to demonstrated the tunability of the cyclization reaction. Electronic tuning was 

possible by changing the tethering functional group between the arene and the proline residue, in the 

case of ether or thioether tethers, tyrosine alkylation was favored over arene alkylation (for example 

18-1a vs. 18-1b). Similarly, electronic tuning by addition of substituents to the respective arenes was 

also possible (18-1a vs. 18-1c). These macrocyclization reactions afforded several macrocyclic scaffolds 

(18-2 to 18-4) and offered further proof of concept for the use of the Friedel-Crafts reaction as a key 

strategy for macrocycle construction. The authors illustrated that treatment of 18-5 with the Lewis acid 

Sc(OTf)3 induced indole C5-alkylation of the adjacent tryptophan to form the macrocyclic product 18-6 

 



 

Figure 18. Selectivity in the Friedel-Crafts macrocyclization of templated peptide 17-1. 

 



2.2. Advanced Build/Couple/Pair 
B/C/P has proven to be a vital approach to generate diverse and complex macrocyclic 

compounds. As a means to increase this further, the original B/C/P strategy has over time evolved to 

incorporate multiple/iterative coupling steps to achieve a higher degree of structural diversity. We have 

classified this strategy as advanced B/C/P. In 2016, inspired by their previous progress in the field of 

diversity-oriented macrocycle synthesis, Ciardiello et al. further developed iterative coupling steps 

(B/C/C/P, B/C/C/C/P, etc.) to generate a library with a high level of skeletal diversity in a low step count 

(Figure 19).108 The authors investigated the application of readily available phenolic starting materials 

containing an electrophilic carbonyl group and a nucleophilic hydroxyl group to the expedient 

production of novel macrocycles. To successfully generate highly diverse macrocycles, four different 

coupling substrates were employed: two hydroxyl (not shown) and two carbonyl coupling partners (19-

2 and 19-3). The phenol was alkylated with azide- or alkene-containing reagents to form compounds of 

type 19-1 followed by reductive alkylation or amidation on the carbonyl using 19-2 and 19-3. 

Incorporation of complimentary functional groups primed the structure for RCM and CuAAC 

macrocyclization to generate B/C/C/P products of general structure 19-8 and 19-9 (for example 19-10 

and 19-11 respectively). For the 19-6 compound class, a spacer was introduced to facilitate the 

generation of B/C/C/C/P products and thereby expand the range of available ring sizes. The authors 

introduced an alkene in the appendages to obtain macrocycles via a RCEYM-macrocyclization of type 

19-7 (19-12). To verify the diversity and modularity of this strategy, the authors performed a proof-of-

concept run-through to generate a small series of four macrocycles containing 13-, 18- and 19-

membred rings. RuAAC-conditions had originally been proposed as a fourth macrocyclization process, 

but unfortunately did not provide the desired 1,5-triazole products in this case. The generated 

molecules contained various vectors, which could be utilized for further functionalization. 



 

Figure 19. Ciardiello et al. explored iterative coupling steps to generate B/C/C/P, B/C/C/C/P, 
etc. products in their effort to provide high level of skeletal diversity.108 

Maurya et al. investigated the use of carbohydrate building blocks as an embedded moiety in 

macrocycles and developed a more eco-friendly cyclization strategy, illustrated in Figure 20.109 The 

authors established an eco-friendly versions of the CuAAC and RCM macrocyclization strategies by 

investigating the use of alternative, ‘green’ solvents. Two sets of starting materials were synthesized: 

enyne- and azido-alkene-functionalized carbohydrates, 20-1 and 20-2 respectively. Firstly, the two 

carbohydrate substrates were linked together using CuAAC conditions to afford compounds of type 20-

3. The macrocycles were then synthesized under RCM conditions (examples 20-4, 20-5 and 20-6). The 



optimized CuAAC cycloaddition was mediated by CuI in H2O at 70 oC and provided the triazole-linked 

linear precursors, which were set-up for macrocyclization. A sustainable RCM reaction was performed 

with Grubbs’ 2nd generation catalyst in EtOAc at 75 oC to provide exclusively the trans-product. This 

strategy afforded 13- and 17- to 19-membered macrocycles with high stereogenic center content. 

 

Figure 20. Maurya et al. established more eco-friendly versions of CuAAC and RCM 
macrocyclization conditions. 109 

In a recent example of introducing scaffold diversity by a MCR, Estrada-Ortiz from the Dömling 

group explored the use of the four component Ugi reaction in the ‘couple’ phase to generate a diverse 

set of macrocyclic compounds which displayed potential as novel p53-MDM2 inhibitors.110 A key indole-

3-carboxaldehyde derivative was used as the aldehyde component due to the “anchoring” behaviour 

of the tryptophan residue.111 The appendages were primed for RCM macrocylization with terminal 

alkene-functionalities incorporated in both the isocyanide and the carboxylic acid components. An 

equimolar mixture of benzylamine (21-1), indole-3-carboxyladehyde (21-3), isocyanide (21-2) and 

carboxylic acid (21-4) in 2,2,2-trifluoroethanol heated in microwave at 120 oC for 1 h afforded the Ugi 

products in low to good yield, Figure 21. In the ‘pair’ phase, macrocylisation was achieved by Grubbs’ 



2nd generation catalyst in low to excellent yield. ‘Post-pair’ hydrogenation and ester hydrolysis were 

introduced (20-6 and 20-7), producing compounds which showed a greater activity than their 

precursors. Varying the length of the carbon chains of the isocyanide and the carboxylic acid afforded 

a range of 12- to 24-membered macrocycles. The formation of a saturated carbon linker in the later 

‘pair’ phase, was thought to allow for strong binding to a large hydrophobic surface area. Initial SAR 

studies identified an optimal ring size of 18, with one of the macrocyclic compounds showing an activity 

of 100 nM as a diastereomeric mixture, product-type 21-6. In the case of product-type 21-7, a racemic 

mixture was obtained, for which enantiomers could be separated by chiral supercritical fluid 

chromatography (SFC). This proved that the (+)-enantiomer was more active than the racemic mixture 

and the (-)-enantiomer. 

 

Figure 21. Estrada-Ortiz et al. applied the versatile Ugi reaction for a B/C/P strategy to produce 
novel p53-MDM2 inhibitors.110 

Carbohydrates are interesting building blocks in organic chemistry due to their high sp3-content 

and multiple stereogenic elements as well as their commercial and synthetic accessibility. Kim et al. 

recognized carbohydrates as ideal starting points for the generation of a DOS library.112 The authors 

realized that bisacylation of vicinal diols (Figure 22, 22-1 and 22-2) with unsaturated carboxylic acids 

(22-3) afforded macrocyclics precursor of the form 22-4. These were subsequently treated with Grubbs’ 



2nd generation catalyst to afford bicyclic products. Trans-vicinal diols afforded planar structures (22-5), 

whereas cis-diols provided conformationally constrained bicyclic products (22-6). These differences 

added an extra dimension to the structural diversity of the library. By coupling the carbohydrates to 

macro beads, the authors were able to generate a library of 19,952 compounds using solid-phase 

synthesis, consisting of macrocycles and their respective linear precursors. The compounds were 

screened intensively across 40 parallel cell-based assays to reveal 36 macrocycles showing positive 

activity, with more than half of them active in more than one assay. 

 

Figure 22. Kim et al. utilized vicinal diols as their starting point for producing a DOS-derived 
library.112 

In an extension of previous work,113 Peng et al. utilized solid-phase synthesis in an extended 

build-couple-pair strategy to generate a series of macrocyclic compounds from 23-1 (Figure 23) to 

ultimately led to the discovery of Robotnikinin.114,115 The authors employed 1,2-aminoalcohols (23-2) 

and unsaturated carboxylic acids (23-3) to obtain 23-4 which by exposure to RCM conditions generated 

a library of 12-, 13- and 14-membered macrocycles classified as B/C/C/P products (23-6). Using 

macrobeads as a solid support for the substrates allowed the expedient generation of 2,070 

compounds. Upon screening of the library, a number of macrocyclic compounds were found to bind to 

the Sonic Hedgehog (Shh) protein. Regulation of this protein has been shown to be valuable in the 

treatment of cancer. The authors extended their approach by developing a solution-phase strategy to 



provide analogues of the hit compounds, which ultimately led to the discovery of the highly active 

compound Robotnikinin (23-5). 

 

Figure 23. Peng et al. disclosed the synthesis of a macrocyclic compound library which led to 
the discovery of Robotnikinin.114,115 

Diketopiperazine (DKP) represents a privileged scaffold observed in cyclic peptides and 

peptidomimetics and as such was the subject of a proof-of-concept effort by Isidro-Llobet et al., who 

set out to incorporate this moiety into a compound library.116 By 2011, only a few examples of 

cycloaddition with α-azido amino acids had been reported, of what the main contributions were from 

van Maarseveen117–119 and Ghadiri120. Initially, an alkyne-acid (24-1) was coupled with an azido-amine 

(24-2) via amide bond formation. This primed the cyclic precursor (24-3) for the versatile CuAAC and 

RuAAC ‘pair’ reaction to afford compounds such as 24-4. The use of CuAAC and RuAAC was a means to 

increase the structural complexity among the products by incorporating both 1,4- and 1,5-triazoles 

respectively, in the compound library. In some cases, the free amine and the methyl ester could be 

further utilized to form the DKP moiety in a ‘post-pair’ step (for example 24-5). Fortunately, no loss of 

stereochemical information was observed under AAC conditions. 14 structurally diverse compounds, 

composed of various biologically important moieties, were generated. This strategy was successful in 

generating a series of macrocycles which occupy previously underrepresented chemical space, as 

shown through principle component analysis (PCA), in a relatively small number of steps. Screening of 

this library also led to the identification of a hit compound against Staphylococcus aureus. 



 

Figure 24. Isidro-Llobet et al. design macrocycles with the incorporation of the DKP moiety to 
generate a compound with Staphylococcus aureus activity.116 

Niu et al. executed a highly innovative synthesis of 14- and 15-membered peptidomimetics 

(Figure 25) by using MCRs in two ‘couple’ phases to generate scaffolds with diverse molecular 

backbones.121 MCR are highly efficient as they are able to incorporate a diverse range of structural 

diversity without the need for protecting groups. The authors decided to incorporate a propargyl group 

and a halide into the appendages to explore a Sonogashira macrocylization strategy. Extensive 

optimization of the reaction conditions was needed to successfully perform the two MCRs and the 

Sonogashira macrocyclization. In the first ‘couple’ step (first MCR), an Ugi reaction was performed by 

the addition of amine (25-1), isonitrile (25-2), o-azido-benzoic acid (25-3) and 2-bromobenzaldehyde 

(25-4). The crude Ugi-product (25-5) was carried through as crude substrate for an additional MCR122 

by the treatment of 2-propynylamine, a diketene (25-6) and DBU to afford a triazole-containing 

macrocylization precursor (25-7 and 25-8). Intramolecular Sonogashira macrocylization was achieved 

by treatment with PdCl2(PPh)3
 and CuI without the need of high dilution conditions, which is generally 

needed for macrocyclization conditions. Diversity was increased by changing the position of the azide 

and the bromine to afford 25-9 and 25-10. Skeletal diversity was further enhanced by swapping around 



on the substitution pattern of the amine and the isonitrile components to afford compounds like 25-

11. A total of 14 macrocylic compounds were generated based upon three distinct molecular scaffolds. 

This is a highly simple strategy with a strong emphasis on diversity by utilizing two MCRs. 



 

Figure 25. Niu et al. conducted iterative ‘coupling’ phases by the use of a MCR strategy and 
finalized their effort to generate macrocycles with a Sonogashira macrocyclization without the 
use of protecting groups.121 

Beckmann et al. explored the use of aza-ylides (Figure 26, 26-2) as a pluripotent functional group 

to provide handles for the multidimensional coupling of a broad array of coupling reagents.123 This 



approach efficiently integrates molecular diversity, via both appendages’ versatilities and linkage 

diversity, in a highly step efficient manner. The concomitant installation of alkynes in the building blocks 

(26-1) and ‘pair’-matching functionalities, such as azide or alkene, in the appendages (26-3) sets up 

these linear precursors (26-4 to 26-7) for functional group pairing via CuAAC and RuAAC or RCEYM 

macrocyclization steps to generate macrocyclic compounds with respect to the incorporated 

functionalities. Metathesis also provides an additional handle for a ‘post-pair’ Diels-Alder reaction to 

further increase the diversity generated using this approach (not shown). The authors neatly displayed 

the flexibility and multidimensional coupling of the aza-ylides (26-2) to generate urea (26-4 and 26-5), 

amide (26-6), guanidine (26-7) and imine (26-9) functionalities by varying the applied electrophile. To 

extend the level of linkage diversity further, the ureas could be cyclized to the corresponding oxalylurea, 

using oxalyl chloride, or to the hydantoin and dihydrouracil, using CDI (not shown). The authors further 

explored this multidimensional strategy by the generated imines (26-9) from aldehydes species (26-8), 

as they were reduced to the amine 26-10, or reacted with Danishefsky’s diene to form aza-Diels-Alder 

product 26-11. The authors took advantage of an ester moiety on the azido building blocks (26-1) to 

introduce a fluorous tag, which both aided purification and provided a further site for ‘post-pair’ 

functionalization. An impressive total of 73 macrocycles, based upon 59 discrete scaffolds, were 

synthesized to prove the viability of this strategy (exemplified by 26-12, 26-13 and 26-14). The group 

used a PMI plot to assess the diversity of the generated library and found that the compounds occupy 

a large area of chemical space as is desirable for screening campaigns. 



 

 

Figure 26. Beckmann et al. probed the use of aza-ylides (26-2) as a pluripotent functional group 
in their multidimensional coupling application to integrate not only substrate diversity but also 
linkage diversity.123 

  



Grossmann et al. produced a natural-product-like macrolactone compound collection, by an 

organocatalyzed B/C/P DOS strategy, which included 51 macrocycles with 48 unique scaffolds without 

the need for protecting group manipulation.124 The strategy builds on the use of aldehydes (27-1) and 

their respective organocatalytic coupling partners, “alophiles” (27-2), such as enals, alcohols, β-

ketoesters and chalcone derivatives (Figure 27A). All of these were generated from the same aldehyde 

precursor for an expedient synthesis of coupling partners. To increase the molecular diversity of the 

compound collection, six different core structures, including aromatic, heteroaromatic and aliphatic 

scaffolds, were employed in the ‘build’ phase. N-heterocyclic carbenes (NHCs) have proven to be an 

effective source of organocatalysts and were chosen in this work for their ability to facilitate 

“umpolung” transformations. In the ‘couple’ phase, ten unique coupling motifs were obtained via 

single-step transformations from the corresponding aldehyde or enal. These included benzoin and 

Stetter reactions, a variety of redox-esterification reactions and a cascade process to afford the 

corresponding macrocyclic precursors (27-3) in low to excellent yields. Incorporation of alkene-

functionalities in the appendages primed these macrocyclic precursors for RCM with Grubbs’ 2nd 

generation catalyst to afford structures like 27-4 and 27-5. To further, increase the skeletal diversity, 

additional 'couple’ phases were introduced. This strategy could be extended to include iterative 

coupling steps, see Figure 27B for an example. 3-Hydroxybenzyl alcohol (27-6) were coupled to an enal 

(27-7) and exposed catalyst 27-8. The phenolic positions were subsequently treated once again with 

the NHC catalyst 27-8 and enal 27-10. Following these iterative coupling steps, macrocyclic compounds 

were obtained after RCM reaction to afford B/C/C/P product 27-11. Repeating the coupling step once 

more followed by RCM conditions gave rise to larger macrocycles via formal B/C/C/C/P algorithm. 

Eleven ring sizes ranging from 12 to 27 ring sized were generated by this approach, providing a diverse 

set of compounds as illustrated by 27-4, 27-5 and 27-11. PMI analysis indicated the generated 

macrocycles exhibited broad shape diversity and significant spherical character, while PCA identified 

significant ‘drug-like’ molecular shape across the library. 



  

Figure 27. Grossmann et al. synthesized 51 macrocycles with 48 unique scaffolds by the use of 
organocatalysts their superior “umpolung” application.124 

The highly modular and versatile aza-ylide (28-1) was further explored by Nie et al., building on 

work from the Spring group, in order to facilitate multidimensional couplings.125 Similar to the approach 

taken by Beckmann,123 aza-ylides (28-1) were reacted with a variety of electrophiles (28-2 and 28-3) to 

explore linkage diversity as another dimension to introduce skeletal diversity. In line with earlier 

reported, ureas and amides (28-4 to 28-7) were introduced directly from the aza-ylides (28-1). Nie et 

al. mainly addressed the versatility of the imine 28-8. This second branching point to successfully 

expand the multidimensional nature of the aza-ylides to include Ugi multicomponent (28-9), Staudinger 

ketene cycloaddition (28-10), Strecker (28-11), aza-Diels-Alder (28-12) and Povarov reactions (not 



shown).. In Figure 28 is highlighted a selection of linkage diversity different from the work by Beckmann 

et al. Iterative ‘couple’ phases were also investigated in order to introduce larger macrocycles and 

further increase the skeletal diversity of the library (not shown). By the selective incorporation of 

alkene, alkyne, iodoaryl and azide functionalities (28-2 and 28-3) in the ‘build’ phase, the bifunctional 

linear precursors could be subjected to an array of macrocyclization protocols. Six known protocols 

were explored (CuAAC, RuAAC, RCEYM, RCM, Sonogashira cross-coupling, Glaser cross-coupling (28-

14)) along with two novel reactions to the macrocyclization field: the Pauson-Khand (28-13, two 

regioisomers were formed, only one shown) and a copper-catalyzed alkyne-iodo-azide cycloaddition 

(CuAIAC, with an external source of iodine) (28-15). Furthermore, the authors explored methods to 

introduce ‘post-pair’ functionalization. The fluorous tags in the aza-ylides were functionalized via 

transesterification, ester-amide exchange, ester reduction and ester hydrolysis. The alkynes generated 

via Sonogashira macrocylization were annulated by reaction with benzyl azide under forcing RuAAC-

conditions, forming the resulting triazoles (not shown). Dihydroxylation of RCM products and acylation 

of the urea species were achieved. The arsenal of macrocyclization reactions explored in this paper 

afforded 45 novel, structurally diverse and complex macrocycles ranging from 15- to 33-membered 

rings. PMI analysis showed that the compounds have prominent spherical characteristics compared to 

various biologically active compounds. 



 

 

Figure 28. Aza-ylides (28-1) were further elaborated as multidimensional coupling partners to 
extend the scope of macrocyclization protocols and linkage diversity.125 

Natural products have long been recognized as excellent sources of complex compounds and 

recent work utilizing the so-called “complexity-to-diversity” strategy has demonstrated that diverse and 

complex compound collections can be constructed via divergent ring distortion and/or ring forming 



reactions on complex natural product scaffolds.126 Ciardiello et al. recently reported the application of 

this strategy to the synthesis of macrocycles using quinine (29-1, Figure 29) as the foundation for library 

construction.127 The quinine-derived starting materials 29-2 and 29-3 were prepared and functionalized 

with different building blocks. Subsequent macrocyclization afforded six structurally distinct and 

complex macrocycles 29-3 through 29-8. 



 

Figure 29. Ciardiello et al. recently utilized the natural product quinine products in their 
“complexity-to-diversity” strategy.127 



2.3. Initiate/Propagate/Terminate 
In impressive work by the Nelson group, Morton et al. were able to generate a total of 86 distinct 

scaffolds via a DOS approach utilizing a key metathesis cascade.54 The Nelson group generally uses the 

terminology “propagating” and “capping” for the generation of building blocks, which closely mirror 

the B/C/P strategy. In this work the authors commenced from fluorous-tagged unsaturated starting 

materials to generate macrocycles using a B/C/C/P algorithm. These fluorous-tagged compounds were 

functionalized with different 2-ene-1,4-diols in the ‘propagating’ phase (30-1, Figure 30) and further 

derivatized with unsaturated substrates (30-2 and 30-3) in the ‘capping’ step under acylation- or 

Mitsunobu conditions. The authors envisioned that the integration of three alkenes in 30-4 would prime 

the compound for a metathesis cascade reaction (pathway I, Figure 30) and afford compounds 

containing cyclic moieties with variable ring sizes. For a subset of linear compounds a competing 

macrocyclization occured (pathway II, Figure 30). 30-4 contains a permanent tether in the form of N-

nosyl, however the authors also generated linear structures with a temporary silaketal tether (for clarity 

not illustrated in Figure 30). The latter compounds undergo macrocyclization but the temporary tether 

is subsequently removed by treatment of hydrogen fluoride. In a few cases, both pathway I and II were 

favourable which resulted in the isolation of two structurally distinct scaffolds from one reaction. A 

fluorous-tagged Hoveyda-Grubbs’ 2nd generation catalyst (f-HG-II) provided macrocycles via a ‘head-to-

tail” approach and afforded simplified purification. Out of the 86 scaffolds synthesized, nine 

macrocycles ranging from 12- to 15-membered rings and one 26-membered ring were reported (such 

as 30-5 to 30-7). The strategy by Morton et al. was extended in 2013128 to include only two macrocycles, 

however this was considerately expanded in a recent publication by Dow et al.129 were they only 

focused on the generation of macrocyclic compounds. The authors focused strongly on the introduction 

of appendage diversity with stereochemical information and multiple function groups. 17 different 

macrocyclic scaffolds spanning ring sizes of 12 to 20 atoms were generated. Due to the natural-product-

likeness of the 17 macrocyclic scaffolds, a small combinatorial library was generated from the scaffolds 

to afford 66 compounds of which several displayed antimycobacterial activity with 30-8 being the most 

potent. 



   

Figure 30. The Nelson group disclosed an extraordinary body of work to generate 86 distinct 
scaffolds, including nine macrocycles, by metathesis.54 

Building on the previous work116 (Figure 24), Isidro-Llobet et al. reported in 2015 the formation 

of macrocyclic peptidomimetics via iterative coupling steps and finally CuAAC macrocylization.130 The 

starting point for the synthesis is an initiating building block, which is coupled with either a 

‘propagating’ and/or a ‘terminating’ building block to afford B/C/P-type products. Iterative 

‘propagating’ steps allows for the generation of products defined as B/C/C/P, B/C/C/C/P. The Spring 

group developed a strategy to explore iterative coupling steps by which they were able to generate an 

unprecedented number of diverse macrocyclic peptidomimetics (>200 molecules). For B/C/P products 

(31-6, Figure 31), azido-amines (31-1) were propagated with alkyne-acids (31-4) followed by a 1,3-

dipolar “head-to-tail” cycloaddition. To generate B/C/C/P-derived compounds (31-7), azido-amines (31-

1) were coupled twice with Boc-protected amino acids (31-2) followed by coupling with alkyne-acids 



(31-4), to afford linear precursors primed for macrocylization by “click” chemistry. Due to the simplicity 

of this strategy, an endless number of iterative ‘propagating’ steps could be envisioned, although the 

authors limited their study to only two additional steps (31-8). All the compounds were poised for a 

‘post-pair’ DKP formation to further enhance molecular diversity. Regions of chemical space 

underexploited in drug discovery were occupied and, furthermore, PMI shows relatively high level of 

shape diversity across the library when compared to a selection of top-selling drugs and natural 

products.  

 

 

Figure 31. The Spring reported group the synthesis of an extraordinary amount of diverse 
macrocyclic peptidomimetics (>200 molecules) by iterative coupling steps.130 

 

2.4. Fragment-based domain shuffling 
Chemical domain shuffling is a tool to incorporate discrete fragments, or ‘chemical domains’, 

into a compound library. Su et al.131 explored chemical domain shuffling via a condensation reaction of 



a carbonyl group (aldehyde/ketone) and an alkoxyamine to generate the corresponding oximes. By this 

strategy, 168 complex products were synthesized and a compound with antiproliferative activity was 

found. This field has also been applied in the generation of macrocyclic compounds. A domain-shuffling 

strategy inspired by pyran-containing macrocyclic natural products such as rapamycin and bryostatin 

was utilized for the construction of a family of pyran-based macrocycles, where slight modifications to 

the building blocks or the order of couplings resulted in structurally distinct macrocyclic products.132 In 

this report, Comer et al. utilized three distinct domains: a pyran domain functionalized with an amine 

and an alcohol (A, 32-1 and 32-2, Figure 32), a linear hydroxy-amino acid domain (B, 32-3) and benzoic 

acid possessing a fluorine and a nitrile substituent (C, 32-4). The pyran and hydroxy-amino acid domains 

were constructed to include several stereocenters each and for each domain the full stereoisomer 

matrix was synthesized and employed. The macrocycles were synthesized in parallel in solution using 

solid-supported reagents in a series of steps including two amide couplings, to join the domains and a 

macrocyclization via nucleophilic aromatic substitution of the alcohol on the pyran domain to the 

benzoic acid domain, which was activated by the nitrile substituent. The resulting macrocycles formed 

through these routes included two distinct three-domain combinations termed A-B-C and A-C-B (e.g. 

32-6 and 32-7). In total, 352 macrocycles representing 14- to 16-membered rings with up to five 

stereocenters in all stereochemical combinations were constructed using this strategy, with a slightly 

expanded set of building blocks. Notably, shape analysis of this library by PMI showed that the closely 

related ABC and ACB rings occupied distinct regions of shape space, indicating that the subtle 

connectivity changes caused by domain shuffling can lead to significant changes in overall macrocyclic 

shape. Furthermore, this library was compared to the National Institutes of Health Molecular Library 

Small Molecule Repository (MLSMR), composed largely of commercially available compounds, and the 

AnalytiCon Discover library containing natural products. The comparison indicated that the generated 

library more closely resembled natural products in structural complexity (Fsp3 and number of 

stereocenters), as well as falling within an acceptable range of physicochemical properties. 



 

Figure 32. Domain-shuffling approach to tetrahydropyran-containing macrocycles 

  

2.5. Two-directional synthesis 
Two-directional strategies have found several applications in the generation of complex 

molecules133–135 and as a versatile synthetic strategy in total synthesis of natural products.136–139 This 

was recognized by O’Connell et al. who applied a two-directional strategy in their effort to synthesize 

macrocycles, see Figure 33.140 Bis-enyne amides (33-1) generated in the ‘build’ and ‘couple’ phases 

were paired with bis-azides (33-3) using CuAAC conditions to afford the corresponding bis-triazole 

compounds (example 33-5). To introduce more structural diversity, the building blocks were treated 



with Grubbs’ 1st generation catalyst under an ethylene atmosphere to generate the bis-1,3-diene 

RCEYM products (33-2). 33-2 were treated with bis-maleimides (33-4) at high temperature to provide 

the corresponding macrocyclic bis-Diels-Alder products (example 33-6). Generally, low yields were 

observed for all of the macrocyclizations. The authors illustrated two examples of ‘post-pair’ 

functionalization of the newly formed alkene: hydrogenation and dihydroxylation. This strategy 

provided 14 macrocycles of nine ring sizes ranging from 21 to 32. By PCA, the compounds were found 

to occupy an underrepresented area of chemical space compared with compounds from the Drugbank 

database. 

 

Figure 33. O’Connell et al. developed a two-directional strategy to generate macrocyclic 
compounds from the common starting material 33-1.140 

 



2.6. Successive Ring Expansion (“SuRE”) 
The application of iterative ring expansion reactions was reported by Kitsiou et al. for the 

construction of a library of diverse macrocyclic lactams and lactones (Figure 34).141 In an elegant 

strategy referred to as “SuRE”, C-selective acylation of a cyclic -ketoester 34-1 with a bifunctional 

amino-acid chloride 34-2 first yielded tricarbonyl species 34-3. Deprotection of the amine with 

piperidine led to spontaneous rearrangement to intermediate 34-4 followed by Grob fragmentation to 

afford ring expanded product 34-5 and regenerated the key -ketoester functional group. Regeneration 

of the -ketoester allowed for further ring expansions to be performed using a variety of bifunctional 

acid chlorides. For example, two further iterations of this sequence from 34-5 using 34-2 produced 24-

membered ring 34-6. In another example, incorporating hydroxyl-containing building block 34-8 in a 

third round of acylation/ expansion furnished macrolactone 34-9. This general strategy allowed for the 

construction of 9- to 24-membered rings with control over ring size and sequence. . 

 

Figure 34. “SuRE” for the synthesis of macrocycles based on β-keto esters. 



The “SuRE” strategy was recently extended to the ring expansion of lactams for the synthesis of 

peptidomimetics by Stephens et al. (Figure 35).142 Starting from a secondary lactam such as 35-1, N-

acylation with a bifunctional acid chloride (35-2) followed by deprotection of the distal amine formed 

ring-expanded product 35-4 while regenerating the crucial secondary lactam functional group. The 

sequence could be repeated with a different acid chloride component to successively expand the 

macrocycle (e.g. 35-4 to 35-6). A variety of - and -amino-acid-derived acid chlorides could be 

employed in the lactam expansion procedure in yields ranging from 40-96% (e.g. 35-7 and 35-8) and 

the “SuRE” sequence performed up to three times to afford a range of peptide-like macrocyclic 

products, containing up to 25-membered rings.  

 

Figure 35. “SuRE” for the synthesis of macrocycles based on secondary amides.  

 

3. Ring Distortion Strategies 

3.1. Sequential cycloaddition/ring cleavage 
Transformations of steroid skeletons represent a well-established approach to complex 

polycyclic molecular frameworks. In a series of reports,143–145 Bäurle et al. explored the construction of 

steroid derived p-cyclophane macrocycles from a precursor of type 36-1, containing a 1,3-diene in its B 

ring (Figure 36), based on initial reports by Winterfeldt et al.146–149 Applying a Diels-Alder/retro Diels-

Alder sequence to this skeleton led to the ring-expanded p-cyclophane macrocycle 36-3. From 36-3, the 

authors created further macrocyclic skeletons via ozone-mediated olefin cleavage, modification and 

subsequent RCM or lactamization reactions to access alternate p-cyclophane macrocycles, as well as D-

ring cleavage to provide further ring-expanded p-cyclophane skeletons 36-5 through 36-8. Screening of 



some of these macrocycles identified 36-4 as a potent inhibitor of phosphatase Cdc25B, an essential 

cell cycle protein. 

 

Figure 36. Sequential Diels-Alder / retro Diels-Alder of steroidal skeleton 36-1 to form 
macrocyclic p–cyclophanes 

A sequence of Diels-Alder / retro Diels-Alder reactions applied to the B-ring diene of 

dehydroisoandrosterone-epoxy-derivative served as the basis for the synthesis of a library of over 2,000 

macrocyclic p-cyclophane compounds reported by Kumar et al.150 Using bead-immobilized 37-1, 

epoxide-opening (Figure 37) with a variety of nucleophiles followed by alkylation or 



acylation/cyclization afforded D-ring functionalized intermediates 37-2. The Diels-Alder reaction of 

ynones with diene 37-2, promoted by Et2AlCl, formed bridged cyclohexadienes 37-3. Subsequent 

thermally-promoted retro Diels-Alder reactions afforded the skeletally transformed p-cyclophane 

products 37-4. The final macrocycles shared the same skeleton, but subsequent functionalizations 

further diversified the library.  

 

Figure 37. Solid phase-suppored synthesis of a library of macrocyclic p-cyclophanes from a 
steroid skeleton based on a Diels Alder / retro Diels-Alder sequence. 

 

Kopp et al. described the synthesis of a collection of macrolactones and macrolactams based on 

the oxidative ring cleavage of bicyclic enone-derived substrates.151 The bicyclic enone substrates were 

constructed via Diels-Alder reaction of 1,3-diketone-derived diene 38- 1 and various dienophiles of type 

38-2 (Figure 38), followed by diastereoselective ketone reduction to afford 38-4. The resulting scaffolds 

were subjected to oxidative cleavage with RuCl3 and Oxone, conditions inspired by the classic oxidative 

cleavage of ∆9,10-octalin to 1,6-cyclodecandione.152 The 10- to 12-membered rings of 38-5 (e.g. 38-6 and 

38-7) produced through this sequence could be further diversified through functional group 

transformations. Notably, the oxidative ring expansion route furnished macrocycles more efficiently 

than classical macrocyclization of linear precursors. Cheminformatic analysis of the final library using 

PCA and PMI analysis showed this approach was able to access distinct chemical space compared to 

macrocyclic drugs and drug-like molecules, with substantial overlap with macrocyclic natural products. 



 

Figure 38. Sequential Diels-Alder / oxidative ring cleavage to form macrocycles 38-5 

 

A library of p-cyclophanes was constructed using the Diels-Alder / retro Diels-Alder approach 

pioneered by Winterfeldt applied to an expanded set of non-steroidal polycyclic dienes (Figure 39).153 

Krieger et al. elegantly demonstrated the construction of a set of 1,3-diene-containing substrates 39-2 

via 6π electrocyclization of triene precursors 39-1. Intra- or intermolecular Diels-Alder cycloadditions 

with an ynoate partner formed the requisite bridging cyclohexadiene skeleton 39-3, which upon 

microwave heating underwent retro Diels-Alder to afford [9]- [10]- and [16]-p-cyclophane products 39-

4. Notably, this approach tolerated the incorporation of nitrogen-containing functional groups and 

allowed for the formation of some caged cyclophanes (for example 39-5 and 39-6).  



 

Figure 39. Sequential Diels-Alder / Retro Diels-Alder of dienes 39-2 to form p-cyclophane 
macrocycles. 

Macrocyclic hydroxamates were synthesized by Acharya et al. by employing a 

cycloaddition/fragmentation strategy based on their earlier work exploring the [4+3] cycloaddition 

between aza-oxyallyl cations and furans (Figure 40).154 The researchers constructed an α-halo 

hydroxamate ester tethered by a linker to a furan unit (40-1), which could undergo base-mediated 

intramolecular [4+3] cycloaddition to form bridged polycycle 40-3. It was initially found that some of 

these cycloadducts ruptured in alcoholic solvent to afford macrocyclic products containing a 

hydroxamate ester and furan ring such as 40-4. This finding was extended to the construction of a 

library of macrocycles by running the reaction in hexafluoroisopropanol (HFIP) to afford macrocyclic 

hydroxamates in a single synthetic procedure via cycloaddition/fragmentation. The effects of 



substitution, substrate rigidity and ring size were studied and revealed that increased rigidity promoted 

cyclization (40-7 through 40-9) and that the formation of rings larger than 12 atoms was more sluggish 

(40-5 and 40-6). The furan rings embedded in these structures could be subsequently treated with a 

variety of oxidants to form other interesting medium-sized and macrocyclic structures, including 40-10 

and 40-11, by treatment with bromine in methanol or phenyliodine(III) diacetate 

((diacetoxyiodo)benzene, PIDA) in methanol respectively. 

 

Figure 40. Synthesis of hydroxamate macrocycles via a sequence of aza-[4+3] cycloaddition / 
proteolysis. 

 

3.2. Ring Expansion 
The synthesis of a collection of 8- to 12-membered rings was reported by Bauer et al. (Figure 

41) leveraging the oxidative dearomatization of bicyclic phenol compounds (41-1) with PhI(OAc)2 to 

yield cyclohexanedione compounds of 41-2.155 Ring expansion/rearomatization of this intermediate 

with either TsOH, Tf2O, or Cu(BF4)2 avoided undesired rearrangement reactions and efficiently yielded 

a first generation library of benzannulated larger ring structures (41-3 to 41-6). Cheminformatics studies 



demonstrated that this library occupied chemical space overlapping with natural products containing 

similarly sized rings but distinct from drugs of the same size, confirming the biomimetic nature of this 

strategy.  

 

Figure 41. Ring expansion via oxidative rearomatization / ring expansion to synthesize 
macrocycles. 

The oxidative ring expansion of bicyclic compounds to form 10- to 12-membered rings was also 

explored using an anti-psoriasis drug as a starting point for further exploration.156,157  

 

3.3. Miscellaneous 
A library of dibenzo-fused [n.2.2] bicyclic macrocycles was constructed based on the dialkylation 

of bis-enolates (42-2) derived from the reduction of anthracene-9,10-dicarboxylate ester 42-1 (Figure 

42).158 When the bis-enolates were treated with a variety of 1,ω-dibromoalkane electrophiles 

macrocyclization smoothly occurred across a wide range of alkane lengths, forming up to 24-membered 

dibenzo [20.2.2] bicycles 42-4 without the need for high dilution conditions. In general, 11-membered 

and higher rings were formed in good yield. The success of this procedure is attributed to the puckered 

intermediate of the first alkylation (42-3), which positions the alkyl chain in the pseudoaxial position, 

thereby exposing the electrophile for a facile intramolecular alkylation.  



 

Figure 42. Macrocyclization by alkylation of bis-enolate 41-2. 

 

The chemistry of α-imino carbenes was leveraged for the synthesis of polyether macrocycles 

under Rh catalysis in a report by Guarnieri-Ibáñez et al.159 In this work, N-sulfonyl triazoles 43-1 were 

reacted with oxetanes 43-2 and dirhodium catalyst 43-3 (Figure 43). Reaction concentration was the 

key feature controlling macrocycle formation and the choice of substituent on the sulfonyl of 43-1 

determined the type of macrocycle formed. It was observed that macrocycle formation occurred via a 

(3+4+4+4)-type cyclization between in situ-generated alpha-imino rhodium carbene and three 

equivalents of oxetane 43-2 when the reaction was performed with a 1 M concentration of 43-1 in 43-

2 as solvent and an arylsulfonyl substrate (R2 = Ar) was used, affording 15-membered macrocycles 43-

4 (e.g, 43-6) (Figure 43A). Alternative 13-membered macrocycle 43-5 formed resulting from [5+4+4] 

cyclization with sulfonyl oxygen attack on the carbene electrophile when methanesulfonyl substrates 

(R2 = Me) were employed (e.g., 43-7). In contrast to macrocylization, at 0.1 M concentration of 43-1 in 

CH2Cl2 formation of tetrahydrofuran 43-8 was observed, as the product of reaction between 43-1 and 

one equivalent of 43-2 followed by LiAlH4 reduction of the imine (Figure 43B). These observations 

allowed for the synthesis of a library of 13- and 15-membered macrocycles. 



 

Figure 43. Guarnieri-Ibáñez et al. synthesized polyether macrocycles by the use of rhodium 
catalyst 43-3.159 

4. Conclusion 
As biological targets are becoming more complicated to address, there is a need to a shift away from 

traditional small molecules of which most compound libraries are comprised. Natural macrocycles have 

early on gained solid ground as biologically interesting molecules against a variety of targets. A study 

showed that of the 68 market macrocyclic drugs (by 2013), the main therapeutic areas were treatment 

against infections followed by oncology.5 Natural macrocycles are usually used without chemical 

modifications (no lead optimization). Over the years the area has developed such that natural 



macrocycles have become an important source either as an inspiration towards simplified 

derivatives160,161 or modified semi-synthetic versions162. Fully-synthetic macrocycles have only recently 

started to become regular members of compound libraries due to the advances within the research 

community to develop straightforward, low step count and highly versatile approaches. We have, 

herein, comprehensively covered literature regarding the formation of macrocyclic compounds by a 

DOS strategy. To generate molecular diversity of macrocyclic compounds, different strategies such as 

the B/C/P or ring-distortion/-expansion have been applied. Building block diversity is the most common 

method to increase the scaffold diversity, but diversity can also be integrated by different 

macrocyclization reactions or initiating steps. The former is particularly valid for B/C/P where are range 

of different macrocyclization reactions have been performed, but in particular RCM and “click” 

chemistry have been exceptional reliable. Due to this reliability, CuAAC and RCM are by far the most 

applied macrocyclization approaches. Unfortunately, these only introduce minor linkage diversity. 

Therefore, there is a need to build up a stronger arsenal with other diversified macrocyclization 

reactions. We believe that a reagent-based macrocyclization strategy is a powerful tool to integrate 

linkage diversity. In this approach two function groups are paired together affording differentproducts 

by variating the conditions.” Ring-distortion and cycloadditions have been widely explored as an 

initiating reaction to set up the starting material for a ring-expansion. As chemistry is constantly 

evolving, implementation of novel methodologies into the macrocyclization step will enable the 

discovery of novel macrocyclic compounds, which is strongly needed. Due to the vastness of 

macrocyclic chemical space and the countless possibilities for building up macrocycles, an initial 

synthetic guidance would be highly valuable to generate biologically active compounds in a cost-

efficient manner. High-throughput screening and conventional synthesis are very cumbersome and 

expensive, thus novel strategies to generate huge libraries could revolutionize drug discovery. The 

epochal work by Liu on DNA-encoded libraries shows that the technique can be used to generate 

enormous compound libraries that can progress through screening and hit identification in a cost-efficient 

manner. This is an approach that has been commercialized over the last decade and is utilized by 

multiple companies, both for macrocycle and small molecule screening platforms. This review describes 

the formation of several hit compounds and biochemical probes based on a DOS strategy. Combined 

with earlier mentioned, with the current number of clinical candidates in development and the 

continuing development and novel macrocycles progressing into clinical development,5 an increase in 

approved drugs is anticipated. 
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