3,370 research outputs found
Recommendations for culturing juvenile Queen Conch, Strombus gigns, for restocking and commercial purposes
Optical coherence tomography - a tool for high resolution non-invasive 3D-imaging of the subsurface structure of paintings
Optical Coherence Tomography (OCT) is an imaging technique originally developed for high-resolution 3D imaging of the human eye. In 2004, Targowski et al. and Liang et al. first reported its application to paintings, demonstrating that it was possible to produce cross-section images noninvasively with this technique. In 2005 Liang et al. explored further applications such as imaging of underdrawing at a resolution and contrast greater than that achievable with infrared reflectography Since then the authors have been conducting a project to investigate systematically the potential of O C T as a new tool in the non-invasive examination of paintings and to design an O C T optimised for use in museums. This paper discusses recent developments in this work and presents examples of the use of O CT on paintings undergoing conservation treatment in the National Gallery, London
Effect of gut active carbohydrates on plasma IgG concentrations in piglets and calves
Improving immune status in neonates is crucial to health and production. Gut active carbohydrates (GAC) have been associated with increasing immunoglobin levels and immonucompetence development in mammals. The objective of the following studies was to evaluate whether GAC (mannan-oligosaccharides) applied orally to progeny immediately following parturition, improved blood plasma immunoglobulin (Ig) type G concentrations in piglets and calves. Three trials were conducted comparing control groups with those receiving GAC orally. The first two trials used piglets that were monitored for blood IgG at 2 days of age and for changes in body weight (BW), and the third trial monitored calf IgG from birth to 21 days of age. Piglets in the experimental group received 0.75 g GAC in 10 ml saline at birth and 24 h of age. The calf trial compared the control group against calves that received 22.5 g GAC mixed into 4.5 l of colostrum (to give 5 g/l) in the first 24 h after parturition. Blood serum samples were taken at 2 days post partum in piglets, and at several time points from 6 h to 21 days of age in calves, and were analysed for IgG levels by radial immunodiffusion. In the first piglet trial, significantly higher levels (32%) of IgG were observed for piglets fed GAC (P < 0.001), and in the second, IgG concentration was elevated by 23% (P < 0.01) and BW increased by 9% (P = 0.023) with GAC supplementation. Significant improvements for calves were recorded at all time points in those fed GAC (P < 0.05), with an increase in serum IgG observed after the first day, which was maintained throughout the sampling period, resulting in a difference of 39% at the end of the trial (21 d). These findings form a basis for further studies, which are required to investigate possible modes of action involved in enhancing blood immunoglobulin concentrations in young animals, and the longer-term effects this may have on the development of the immune respons
Optical coherence tomography for art conservation and archaeology
Optical coherence tomography (OCT) is a fast scanning Michelson interferometer originally designed for in vivo imaging of the eye. In 2004, our group along with two other groups first reported the application of OCT to art conservation and archaeology. Since that time we have been conducting a project to investigate systematically the potential of OCT as a new tool for non-invasive examinations of a wide range of museum objects and to design an OCT optimised for in situ use in museums. Here we present the latest results from this ongoing project, which include the determination of the optimum spectral windows for OCT imaging of paintings and painted objects executed using traditional techniques, and non-invasive imaging of the subsurface stratigraphy of painted layers at multiple wavelengths. OCT imaging in assisting spectral pigment identification and in measuring refractive indices of paint will also be presented to illustrate the potential of the technique
Skylab S-193 Radscat microwave measurements of sea surface winds
The S-193 Radscat made extensive measurements of many sea conditions. Measurements were taken in a tropical hurricane (Ava), a tropical storm (Christine), and in portions of extratropical cyclones. Approximately 200 scans of ocean data at 105 kilometer spacings were taken during the first two Skylab missions and another 200 during the final mission when the characteristics of the measurements changed due to damage of the antenna. Backscatter with four transmit/receive polarization combinations and emissions with horizontal and vertical receive polarizations were measured. Other surface parameters investigated for correlation with the measurements included sea temperature, air/sea temperature difference, and gravity-wave spectrum. Methods were developed to correct the microwave measurements for atmospheric effects. The radiometric data were corrected accurately for clear sky and light cloud conditions only. The radiometer measurements were used to recover the surface scattering characteristics for all atmospheric conditions excluding rain. The radiometer measurements also detected the presence of rain which signaled when the scattering measurement should not be used for surface wind estimation. Regression analysis was used to determine empirically the relation between surface parameters and the microwave measurements, after correction for atmospheric effects. Results indicate a relationship approaching square-law at 50 deg between differential scattering coefficient and wind speed with horizontally polarized scattering data showing slightly more sensitivity to wind speed than vertically polarized data
Vanishing cycles and mutation
This is the writeup of a talk given at the European Congress of Mathematics,
Barcelona. It considers Picard-Lefschetz theory from the Floer cohomology
viewpoint.Comment: 20 pages, LaTeX2e. TeXnical problem should now be fixed, so that the
images will appear even if you download the .ps fil
On the experimental verification of quantum complexity in linear optics
The first quantum technologies to solve computational problems that are
beyond the capabilities of classical computers are likely to be devices that
exploit characteristics inherent to a particular physical system, to tackle a
bespoke problem suited to those characteristics. Evidence implies that the
detection of ensembles of photons, which have propagated through a linear
optical circuit, is equivalent to sampling from a probability distribution that
is intractable to classical simulation. However, it is probable that the
complexity of this type of sampling problem means that its solution is
classically unverifiable within a feasible number of trials, and the task of
establishing correct operation becomes one of gathering sufficiently convincing
circumstantial evidence. Here, we develop scalable methods to experimentally
establish correct operation for this class of sampling algorithm, which we
implement with two different types of optical circuits for 3, 4, and 5 photons,
on Hilbert spaces of up to 50,000 dimensions. With only a small number of
trials, we establish a confidence >99% that we are not sampling from a uniform
distribution or a classical distribution, and we demonstrate a unitary specific
witness that functions robustly for small amounts of data. Like the algorithmic
operations they endorse, our methods exploit the characteristics native to the
quantum system in question. Here we observe and make an application of a
"bosonic clouding" phenomenon, interesting in its own right, where photons are
found in local groups of modes superposed across two locations. Our broad
approach is likely to be practical for all architectures for quantum
technologies where formal verification methods for quantum algorithms are
either intractable or unknown.Comment: Comments welcom
Quantum protocols for anonymous voting and surveying
We describe quantum protocols for voting and surveying. A key feature of our
schemes is the use of entangled states to ensure that the votes are anonymous
and to allow the votes to be tallied. The entanglement is distributed over
separated sites; the physical inaccessibility of any one site is sufficient to
guarantee the anonymity of the votes. The security of these protocols with
respect to various kinds of attack is discussed. We also discuss classical
schemes and show that our quantum voting protocol represents a N-fold reduction
in computational complexity, where N is the number of voters.Comment: 8 pages. V2 includes the modifications made for the published versio
Multidimensional cut-off technique, odd-dimensional Epstein zeta functions and Casimir energy of massless scalar fields
Quantum fluctuations of massless scalar fields represented by quantum
fluctuations of the quasiparticle vacuum in a zero-temperature dilute
Bose-Einstein condensate may well provide the first experimental arena for
measuring the Casimir force of a field other than the electromagnetic field.
This would constitute a real Casimir force measurement - due to quantum
fluctuations - in contrast to thermal fluctuation effects. We develop a
multidimensional cut-off technique for calculating the Casimir energy of
massless scalar fields in -dimensional rectangular spaces with large
dimensions and dimensions of length and generalize the technique to
arbitrary lengths. We explicitly evaluate the multidimensional remainder and
express it in a form that converges exponentially fast. Together with the
compact analytical formulas we derive, the numerical results are exact and easy
to obtain. Most importantly, we show that the division between analytical and
remainder is not arbitrary but has a natural physical interpretation. The
analytical part can be viewed as the sum of individual parallel plate energies
and the remainder as an interaction energy. In a separate procedure, via
results from number theory, we express some odd-dimensional homogeneous Epstein
zeta functions as products of one-dimensional sums plus a tiny remainder and
calculate from them the Casimir energy via zeta function regularization.Comment: 42 pages, 3 figures. v.2: typos corrected to match published versio
- …
