40 research outputs found

    Platelet Serotonin Level Predicts Survival in Amyotrophic Lateral Sclerosis

    Get PDF
    International audienceBACKGROUND: Amyotrophic lateral sclerosis (ALS) is a life-threatening neurodegenerative disease involving upper and lower motor neurons loss. Clinical features are highly variable among patients and there are currently few known disease-modifying factors underlying this heterogeneity. Serotonin is involved in a range of functions altered in ALS, including motor neuron excitability and energy metabolism. However, whether serotoninergic activity represents a disease modifier of ALS natural history remains unknown. METHODOLOGY: Platelet and plasma unconjugated concentrations of serotonin and plasma 5-HIAA, the major serotonin metabolite, levels were measured using HPLC with coulometric detection in a cohort of 85 patients with ALS all followed-up until death and compared to a control group of 29 subjects. PRINCIPAL FINDINGS: Platelet serotonin levels were significantly decreased in ALS patients. Platelet serotonin levels did not correlate with disease duration but were positively correlated with survival of the patients. Univariate Cox model analysis showed a 57% decreased risk of death for patients with platelet serotonin levels in the normal range relative to patients with abnormally low platelet serotonin (p = 0.0195). This protective effect remained significant after adjustment with age, gender or site of onset in multivariate analysis. Plasma unconjugated serotonin and 5-HIAA levels were unchanged in ALS patients compared to controls and did not correlate with clinical parameters. CONCLUSIONS/SIGNIFICANCE: The positive correlation between platelet serotonin levels and survival strongly suggests that serotonin influences the course of ALS disease

    Disease-Related Changes in the Cerebrospinal Fluid Metabolome in Amyotrophic Lateral Sclerosis Detected by GC/TOFMS

    Get PDF
    The changes in the cerebrospinal fluid (CSF) metabolome associated with the fatal neurodegenerative disease amyotrophic lateral sclerosis (ALS) are poorly understood and earlier smaller studies have shown conflicting results. The metabolomic methodology is suitable for screening large cohorts of samples. Global metabolomics can be used for detecting changes of metabolite concentrations in samples of fluids such as CSF.Using gas chromatography coupled to mass spectrometry (GC/TOFMS) and multivariate statistical modeling, we simultaneously studied the metabolome signature of ∼120 small metabolites in the CSF of patients with ALS, stratified according to hereditary disposition and clinical subtypes of ALS in relation to controls.The study is the first to report data validated over two sub-sets of ALS vs. control patients for a large set of metabolites analyzed by GC/TOFMS. We find that patients with sporadic amyotrophic lateral sclerosis (SALS) have a heterogeneous metabolite signature in the cerebrospinal fluid, in some patients being almost identical to controls. However, familial amyotrophic lateral sclerosis (FALS) without superoxide dismutase-1 gene (SOD1) mutation is less heterogeneous than SALS. The metabolome of the cerebrospinal fluid of 17 ALS patients with a SOD1 gene mutation was found to form a separate homogeneous group. Analysis of metabolites revealed that glutamate and glutamine were reduced, in particular in patients with a familial predisposition. There are significant differences in the metabolite profile and composition among patients with FALS, SALS and patients carrying a mutation in the SOD1 gene suggesting that the neurodegenerative process in different subtypes of ALS may be partially dissimilar.Patients with a genetic predisposition to amyotrophic lateral sclerosis have a more distinct and homogeneous signature than patients with a sporadic disease

    Nuclear poly(ADP-ribose) activity is a therapeutic target in amyotrophic lateral sclerosis

    Get PDF
    Abstract Amyotrophic lateral sclerosis (ALS) is a devastating and fatal motor neuron disease. Diagnosis typically occurs in the fifth decade of life and the disease progresses rapidly leading to death within ~ 2–5 years of symptomatic onset. There is no cure, and the few available treatments offer only a modest extension in patient survival. A protein central to ALS is the nuclear RNA/DNA-binding protein, TDP-43. In > 95% of ALS patients, TDP-43 is cleared from the nucleus and forms phosphorylated protein aggregates in the cytoplasm of affected neurons and glia. We recently defined that poly(ADP-ribose) (PAR) activity regulates TDP-43-associated toxicity. PAR is a posttranslational modification that is attached to target proteins by PAR polymerases (PARPs). PARP-1 and PARP-2 are the major enzymes that are active in the nucleus. Here, we uncovered that the motor neurons of the ALS spinal cord were associated with elevated nuclear PAR, suggesting elevated PARP activity. Veliparib, a small-molecule inhibitor of nuclear PARP-1/2, mitigated the formation of cytoplasmic TDP-43 aggregates in mammalian cells. In primary spinal-cord cultures from rat, Veliparib also inhibited TDP-43-associated neuronal death. These studies uncover that PAR activity is misregulated in the ALS spinal cord, and a small-molecular inhibitor of PARP-1/2 activity may have therapeutic potential in the treatment of ALS and related disorders associated with abnormal TDP-43 homeostasis

    Defining novel functions for cerebrospinal fluid in ALS pathophysiology

    Get PDF
    Despite the considerable progress made towards understanding ALS pathophysiology, several key features of ALS remain unexplained, from its aetiology to its epidemiological aspects. The glymphatic system, which has recently been recognised as a major clearance pathway for the brain, has received considerable attention in several neurological conditions, particularly Alzheimer's disease. Its significance in ALS has, however, been little addressed. This perspective article therefore aims to assess the possibility of CSF contribution in ALS by considering various lines of evidence, including the abnormal composition of ALS-CSF, its toxicity and the evidence for impaired CSF dynamics in ALS patients. We also describe a potential role for CSF circulation in determining disease spread as well as the importance of CSF dynamics in ALS neurotherapeutics. We propose that a CSF model could potentially offer additional avenues to explore currently unexplained features of ALS, ultimately leading to new treatment options for people with ALS.</p

    Excess cerebral TNF causing glutamate excitotoxicity rationalizes treatment of neurodegenerative diseases and neurogenic pain by anti-TNF agents

    Full text link

    Règlement général sur la protection des données pour MASK-air® (application mobile rhinite et l’asthme)

    No full text
    International audienceThe General Data Protection Regulation (GDPR) regulates the processing of personal data in the European Union. The legal context is adapted to follow the evolution of technologies and of society. This new European regulation became mandatory, especially for connected devices, on May 25, 2018. An app originally known as "The Allergy Diary" is available for Android phones and iPhones. Its name was recently changed to MASK-air. The downloading and use of this app are free of charge and there are no adverts. It enables users to record their symptoms and their medications to better track the progress of their allergic rhinitis and/or asthma. It has been developed by public (Foundation FMC VIA-LR, University of Montpellier) and private (KYomed INNOV) organizations based in France and therefore falls under French jurisdiction. This article summarizes the five main principles of personal data protection to be respected during the development of the app: purpose, proportionality and relevance, limited retention period, security and confidentiality, as well as the rights of the people who are involved in the management of the personal data (including withdrawal and modification)

    Platelet, Plasma, Urinary Tryptophan-Serotonin-Kynurenine Axis Markers in Hyperacute Brain Ischemia Patients: A Prospective Study

    No full text
    International audienceBackground and Purpose: Ischemic stroke is one of the most common causes of morbidity and mortality and has numerous clinical mimics. Previous studies have suggested a potential role of the tryptophan-serotonin (5-HT)-kynurenine (TSK) axis in ischemic stroke. Studies assessing this axis in the hyperacute phase of ischemic stroke (&lt;4.5 h) are lacking. This prospective study thus evaluates the TSK axis in transient ischemic attack (TIA) and hyperacute ischemic stroke (AIS) patients. Methods: This study included 28 patients (24 AIS and 4 TIA) and 29 controls. The blood and urine samples of patient were collected within 4.5 h of symptoms onset (day 0, D0), then at 24 h and 3 months. Control blood and urine samples were collected once (D0). The TSK axis markers measured were platelet serotonin transporter (SERT) and 5-HT2A receptor (5-HT2AR) densities and platelet, plasma, and urinary 5-HT, plasma and urinary 5-hydroxyindole acetic acid (5-HIAA), and plasma kynurenine and tryptophan (TRP) levels. Results: At D0, patients exhibited a lower (p = 10−5) platelet SERT density, higher (p &lt; 10−6) platelet 5-HT2AR density, higher (p = 10−5) plasma kynurenine/tryptophan (K/T) ratio, and higher urinary 5-HT (p = 0.011) and 5-HIAA (p = 0.003) levels than controls. Conclusions: We observed, for the first time, a hyperacute dysregulation of the serotonergic axis, and hyperacute and long-lasting activation of the tryptophan-kynurenine pathway in brain ischemia
    corecore