63 research outputs found

    Imaging Orbital-selective Quasiparticles in the Hund's Metal State of FeSe

    Get PDF
    Strong electronic correlations, emerging from the parent Mott insulator phase, are key to copper-based high temperature superconductivity (HTS). By contrast, the parent phase of iron-based HTS is never a correlated insulator. But this distinction may be deceptive because Fe has five active d-orbitals while Cu has only one. In theory, such orbital multiplicity can generate a Hund's Metal state, in which alignment of the Fe spins suppresses inter-orbital fluctuations producing orbitally selective strong correlations. The spectral weights ZmZ_m of quasiparticles associated with different Fe orbitals m should then be radically different. Here we use quasiparticle scattering interference resolved by orbital content to explore these predictions in FeSe. Signatures of strong, orbitally selective differences of quasiparticle ZmZ_m appear on all detectable bands over a wide energy range. Further, the quasiparticle interference amplitudes reveal that Zxy<Zxz<<ZyzZ_{xy}<Z_{xz}<<Z_{yz}, consistent with earlier orbital-selective Cooper pairing studies. Thus, orbital-selective strong correlations dominate the parent state of iron-based HTS in FeSe.Comment: for movie M1, see http://www.physik.uni-leipzig.de/~kreisel/osqp/M1.mp4, for movie M2, see http://www.physik.uni-leipzig.de/~kreisel/osqp/M2.mp4, for movie M3, see http://www.physik.uni-leipzig.de/~kreisel/osqp/M3.mp4, for movie M4, see http://www.physik.uni-leipzig.de/~kreisel/osqp/M4.mp4, for movie M5, see http://www.physik.uni-leipzig.de/~kreisel/osqp/M5.mp

    Multi-Atom Quasiparticle Scattering Interference for Superconductor Energy-Gap Symmetry Determination

    Get PDF
    Complete theoretical understanding of the most complex superconductors requires a detailed knowledge of the symmetry of the superconducting energy-gap Δkα\Delta_\mathbf{k}^\alpha, for all momenta k\mathbf{k} on the Fermi surface of every band α\alpha. While there are a variety of techniques for determining ∣Δkα∣|\Delta_\mathbf{k}^\alpha|, no general method existed to measure the signed values of Δkα\Delta_\mathbf{k}^\alpha. Recently, however, a new technique based on phase-resolved visualization of superconducting quasiparticle interference (QPI) patterns centered on a single non-magnetic impurity atom, was introduced. In principle, energy-resolved and phase-resolved Fourier analysis of these images identifies wavevectors connecting all k-space regions where Δkα\Delta_\mathbf{k}^\alpha has the same or opposite sign. But use of a single isolated impurity atom, from whose precise location the spatial phase of the scattering interference pattern must be measured is technically difficult. Here we introduce a generalization of this approach for use with multiple impurity atoms, and demonstrate its validity by comparing the Δkα\Delta_\mathbf{k}^\alpha it generates to the Δkα\Delta_\mathbf{k}^\alpha determined from single-atom scattering in FeSe where s±s_{\pm} energy-gap symmetry is established. Finally, to exemplify utility, we use the multi-atom technique on LiFeAs and find scattering interference between the hole-like and electron-like pockets as predicted for Δkα\Delta_\mathbf{k}^\alpha of opposite sign

    Imaging atomic-scale effects of high-energy ion irradiation on superconductivity and vortex pinning in Fe(Se,Te)

    Get PDF
    Maximizing the sustainable supercurrent density, Jc, is crucial to high current applications of superconductivity and, to achieve this, preventing dissipative motion of quantized vortices is key. Irradiation of superconductors with high-energy heavy ions can be used to create nanoscale defects that act as deep pinning potentials for vortices. This approach holds unique promise for high current applications of iron-based superconductors because Jc amplification persists to much higher radiation doses than in cuprate superconductors without significantly altering the superconducting critical temperature. However, for these compounds virtually nothing is known about the atomic scale interplay of the crystal damage from the high-energy ions, the superconducting order parameter, and the vortex pinning processes. Here, we visualize the atomic-scale effects of irradiating FeSexTe1-x with 249 MeV Au ions and find two distinct effects: compact nanometer-sized regions of crystal disruption or 'columnar defects', plus a higher density of single atomic-site 'point' defects probably from secondary scattering. We show directly that the superconducting order is virtually annihilated within the former while suppressed by the latter. Simultaneous atomically-resolved images of the columnar crystal defects, the superconductivity, and the vortex configurations, then reveal how a mixed pinning landscape is created, with the strongest pinning occurring at metallic-core columnar defects and secondary pinning at clusters of pointlike defects, followed by collective pinning at higher fields.Comment: Main text (14 pages, 5 figures) and supplementary information (6 pages, 7 figures

    Discovery of orbital-selective Cooper pairing in FeSe

    Get PDF
    For movie S1, see http://www.physik.uni-leipzig.de/~kreisel/oscp/S1.mp4, for movie S2, see http://www.physik.uni-leipzig.de/~kreisel/oscp/S2.mp4 and for movie S3, see http://www.physik.uni-leipzig.de/~kreisel/oscp/S3.mp4 Funding: Moore Foundation’s EPiQS Initiative through Grant GBMF4544 (JCSD)The superconductor iron selenide (FeSe) is of intense interest owing to its unusual nonmagnetic nematic state and potential for high-temperature superconductivity. But its Cooper pairing mechanism has not been determined. We used Bogoliubov quasiparticle interference imaging to determine the Fermi surface geometry of the electronic bands surrounding the Γ = (0, 0) and X = (π/aFe, 0) points of FeSe and to measure the corresponding superconducting energy gaps. We show that both gaps are extremely anisotropic but nodeless and that they exhibit gap maxima oriented orthogonally in momentum space. Moreover, by implementing a novel technique, we demonstrate that these gaps have opposite sign with respect to each other. This complex gap configuration reveals the existence of orbital-selective Cooper pairing that, in FeSe, is based preferentially on electrons from the dyz orbitals of the iron atoms.PostprintPeer reviewe

    Multi-atom quasiparticle scattering interference for superconductor energy-gap symmetry determination

    Get PDF
    Complete theoretical understanding of the most complex superconductors requires a detailed knowledge of the symmetry of the superconducting energy-gap Δαk\frac{α}{k}, for all momenta k on the Fermi surface of every band α. While there are a variety of techniques for determining |Δαk\frac{α}{k}|, no general method existed to measure the signed values of Δαk\frac{α}{k}. Recently, however, a technique based on phase-resolved visualization of superconducting quasiparticle interference (QPI) patterns, centered on a single non-magnetic impurity atom, was introduced. In principle, energy-resolved and phase-resolved Fourier analysis of these images identifies wavevectors connecting all k-space regions where Δαk\frac{α}{k} has the same or opposite sign. But use of a single isolated impurity atom, from whose precise location the spatial phase of the scattering interference pattern must be measured, is technically difficult. Here we introduce a generalization of this approach for use with multiple impurity atoms, and demonstrate its validity by comparing the Δαk\frac{α}{k} it generates to the Δαk\frac{α}{k} determined from single-atom scattering in FeSe where s± energy-gap symmetry is established. Finally, to exemplify utility, we use the multi-atom technique on LiFeAs and find scattering interference between the hole-like and electron-like pockets as predicted for Δαk\frac{α}{k} of opposite sign

    Highly efficient polymer solar cells cast from non-halogenated xylene/anisaldehyde solution

    Get PDF
    Several high performance polymer:fullerene bulk-heterojunction photo-active layers, deposited from the non-halogenated solvents o-xylene or anisole in combination with the eco-compatible additive p-anisaldehyde, are investigated. The respective solar cells yield excellent power conversion efficiencies up to 9.5%, outperforming reference devices deposited from the commonly used halogenated chlorobenzene/1,8-diiodooctane solvent/additive combination. The impact of the processing solvent on the bulk-heterojunction properties is exemplified on solar cells comprising benzodithiophene-thienothiophene co-polymers and functionalized fullerenes (PTB7:PC71BM). The additive p-anisaldehyde improves film formation, enhances polymer order, reduces fullerene agglomeration and shows high volatility, thereby positively affecting layer deposition, improving charge carrier extraction and reducing drying time, the latter being crucial for future large area roll-to-roll device fabrication. © The Royal Society of Chemistry 2015

    Severe dirac mass gap suppression in Sb 2 Te 3-based quantum anomalous Hall materials

    Get PDF
    The quantum anomalous Hall (QAH) effect appears in ferromagnetic topological insulators (FMTIs) when a Dirac mass gap opens in the spectrum of the topological surface states (SSs). Unaccountably, although the mean mass gap can exceed 28 meV (or ∼320 K), the QAH effect is frequently only detectable at temperatures below 1 K. Using atomic-resolution Landau level spectroscopic imaging, we compare the electronic structure of the archetypal FMTI Cr0.08(Bi0.1Sb0.9)1.92Te3 to that of its nonmagnetic parent (Bi0.1Sb0.9)2Te3, to explore the cause. In (Bi0.1Sb0.9)2Te3, we find spatially random variations of the Dirac energy. Statistically equivalent Dirac energy variations are detected in Cr0.08(Bi0.1Sb0.9)1.92Te3 with concurrent but uncorrelated Dirac mass gap disorder. These two classes of SS electronic disorder conspire to drastically suppress the minimum mass gap to below 100 μeV for nanoscale regions separated by <1 μm. This fundamentally limits the fully quantized anomalous Hall effect in Sb2Te3-based FMTI materials to very low temperatures
    • …
    corecore