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1  The superconductor FeSe is of intense interest thanks to its unusual 

non-magnetic nematic state and potential for high temperature 

superconductivity. But its Cooper pairing mechanism has not been 

determined. Here we use Bogoliubov quasiparticle interference imaging to 

determine the Fermi surface geometry of the bands surrounding the 

=and X=aFe, points of FeSe, and to measure the corresponding 

superconducting energy gaps.  We show that both gaps are extremely 

anisotropic but nodeless, and exhibit gap maxima oriented orthogonally in 

momentum space. Moreover, by implementing a novel technique we 

demonstrate that these gaps have opposite sign with respect to each other. 

This complex gap configuration reveals the existence of orbital-selective 

Cooper pairing which, in FeSe, is based preferentially on electrons from the dyz 

orbitals of the iron atoms.  
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2  The high temperature superconductivity in iron-based superconductors 

is typically most robust where coexisting antiferromagnetic and nematic ordered 

states are suppressed by doping or pressure (1-3). However, FeSe appears 

distinctive for several reasons: (i) Although strongly nematic, it does not form an 

ordered magnetic state and is instead hypothesized to be a quantum paramagnet (4-

6); (ii) it exhibits evidence for orbital selectivity (7 ,8) of band structure 

characteristics (9-12); (iii) a monolayer of FeSe grown upon a SrTiO3 substrate 

produces the highest Tc of all iron-based superconductors (13-16). It is therefore 

essential to understand the electronic structure and superconductivity of FeSe at a 

microscopic level; however, the Cooper pairing mechanism of FeSe is unknown. A 

quantitative determination of the momentum space (𝑘⃗ -space) structure and relative 

sign of the superconducting energy gapsΔ𝑖(𝑘⃗ ) on each electronic band 𝐸𝑖(𝑘⃗ ) is 

necessary to identify this mechanism. So far, this has not been achieved because of 

the minute Fermi-surface pockets as well as the highly anisotropic Δ𝑖(𝑘⃗ ) requiring 

energy resolution E<100eV. Here we use sub-kelvin Bogoliubov quasiparticle 

interference imaging (BQPI) (17-19), an established technique for high-precision 

multiband  Δ𝑖(𝑘⃗ ) determination (20,21,22), to measure the detailed structure of the 

energy gaps in FeSe.  
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3  In the orthorhombic phase below 𝑇𝑆 ≅ 90𝐾, FeSe has a crystal unit cell 

with conventional lattice parameters a=5.31 Å, b=5.33 Å and c=5.48 Å. Here we 

parameterize the Fe-plane of the same lattice using the two inequivalent Fe-Fe 

distances aFe=2.665 Å and bFe=2.655 Å in the orthorhombic/nematic phase (Fig. 1A, 

section I of supplementary materials (SM)); we define the x-axis (y-axis) to always 

be parallel to the orthorhombic aFe-axis (bFe-axis), so that our x/y coordinate system 

rotates when a twin boundary is crossed. The FeSe Fermi surface (FS) is postulated 

to consist of three bands and (shown for kz=0 in Fig. 1B), and may be 

parameterized accurately using a tight-binding model ( 23 , 24 ) that is fit 

simultaneously to several types of experimental observations (sections II and III of 

SM). Surrounding the =(0,0) point is an ellipsoidal hole-like -band, whose FS  

𝑘⃗ α(𝐸 = 0)  has its major axis aligned to the orthorhombic bFe-axis; surrounding the 

X=(/aFe,0) point is the electron-like -band whose “bowtie” FS  𝑘⃗ ε(𝐸 = 0)  has its 

major axis aligned to the orthorhombic aFe-axis. At the Y=(0,/bFe) point, a -band 

FS should also exist but has not been detectable by spectroscopic techniques. In this 

picture, the dyz orbital content of the -band Fermi surface has its maximum value 

along the x-axis (green in Fig. 1B) whereas its dxz orbital content peaks along the y-

axis (red in Fig. 1B) . Conversely, the dyz orbital content of the -band FS is maximum 

along the y-axis (green in Fig. 1B), and its dxy orbital content reaches its highest 

point along the x-axis (blue in Fig. 1B); (Refs. 23,24,25 and section II of SM). These -

band and -band FS pockets (Fig. 1B) exhibit maximal simultaneous consistency 
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with FS geometry from angle resolved photoemission (ARPES) (25,26), quantum 

oscillations (QO) (27,28), and BQPI as discussed below (section III of SM).  

 

4   A fundamental issue in iron-based superconductivity research is whether 

conduction electrons are weakly or strongly correlated, and the consequences thereof 

for enhancing the superconductivity. The situation is complex because multiple Fe 

orbitals (e.g. dxz, dyz, dxy) are involved.  One limit of theoretical consideration is an 

uncorrelated metallic state where ‘nesting’ features of the FS geometry generate 

antiferromagnetic spin-fluctuations which then mediate Cooper pairing and 

superconductivity (2). By contrast, the ordered magnetic states of these same materials 

are often modeled using frustrated multi-orbital Heisenberg (J1-J2) models in which 

electrons are essentially localized, with the metallicity and spin-fluctuation-mediated-

superconductivity appearing upon doping this magnetic insulator (5). Intermediate 

between the two is the Hund’s metal viewpoint (7) in which strong Hund’s coupling, 

while aligning the Fe spins, also suppresses the inter-orbital charge fluctuations. This 

generates orbital decoupling in the electronic structure which allows ‘orbital selectivity’ 

to occur in the effects of correlations (7,8). In theory, the result can be Mott-localized 

states associated with one orbital coexisting with delocalized quasiparticle states 

associated with others. Under such circumstances, the pairing itself might become 

orbital-selective (29,30) meaning that the electrons of predominantly one specific 

orbital character bind to form the Cooper pairs of the superconductor. If this occurs, the 
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superconducting energy gaps should become highly anisotropic (29,30), being large 

only for those FS regions where a specific orbital character dominates. Such phenomena 

have remained largely unexplored because orbital-selective Cooper pairing has never 

been detected in any material.  

 

5  To search for such pairing in FeSe, we apply BQPI imaging of impurity-

scattered quasiparticles that interfere quantum-mechanically to produce 

characteristic modulations of the density-of-states, 𝑁(𝑟 , 𝐸)  surrounding each 

impurity atom. When a  𝑘⃗ -space energy gap  Δ𝑖(𝑘⃗ )  is anisotropic, the Bogoliubov 

quasiparticle dispersion E𝑖(𝑘⃗ ) will exhibit closed constant-energy-contours (CEC) 

which are roughly ‘banana-shaped’ and surround FS points where Δ𝑖(𝑘⃗ )  is 

minimum (20-22). Then, at a given energy E, the locus of the ‘banana tips’ can be 

determined because the maximum intensity BQPI modulations occur at wavevectors 

𝑞 𝑗(𝐸) connecting the tips, thanks to their high joint density of states (JDOS) for 

scattering interference. Both the superconductor’s Cooper-pairing energy gap Δ𝑖(𝑘⃗ ) 

and the FS on each band are then determined directly (20-22) by geometrically 

inverting the measured BQPI wavevector set 𝑞𝑗(𝐸)  in the energy range 

Δ𝑖
𝑚𝑖𝑛<E<Δ𝑖

𝑚𝑎𝑥 . As these techniques can be implemented at temperatures T ≤

300𝑚𝐾 , the Δ𝑖(𝑘⃗ ) on multiple bands can be measured with energy resolution 𝛿𝐸 ≈

75𝜇𝑒𝑉 (21,22) , a precision unachievable by any other approach. 
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6  However, no BQPI measurements have been reported for bulk FeSe, 

although photoemission data for the equivalent of the-band do exist for a related 

compound Fe(Se,S) (31). For guidance, we first consider a pedagogical model but 

note that Fermi surfaces and energy-gap structures derived using BQPI imaging do 

not depend on any particular model (20-22).  Given the -band FS (fine dashed grey 

contour in Fig. 1C) supporting an anisotropic Δα(𝑘⃗ ) that has C2 symmetry (31,32), 

the contours-of-constant energy (CEC) would be as shown by the fine colored 

curves, with quasiparticle energy increasing as indicated by the color code. The tips 

of each Bogoliubov CEC ‘banana’ are then indicated by colored dots similarly 

representing increasing energy; we expect that a triplet of inequivalent BQPI 

wavevectors 𝑞 𝑖
α(𝐸) i=1-3 should exist (black arrows in Fig. 1C). The anticipated 

energy dependence of the 𝑞 𝑖
α(𝐸) is shown schematically in Fig. 1E using the same 

color code as for banana-tips in Fig. 1C. For each energy Δ𝑖
𝑚𝑖𝑛 < E < Δ𝑖

𝑚𝑎𝑥 the 

positions of the four CEC bananas-tips (±𝑘𝑥(𝐸),±𝑘𝑦(𝐸))𝛼  can be determined by 

inverting  

𝑞 1
α = (0,2𝑘𝑦)   (1) 

𝑞 3
α = (2𝑘𝑥, 0)  (2) 

𝑞 2
α = (2𝑘𝑥, 2𝑘𝑦)  (3) 

If a C2-symmetric energy gap Δδ(𝑘⃗ ) existed on the -band surrounding Y=(0,/bFe) it 

might be expected to behave very comparably. A similar analysis (Fig. 1, D and F) 
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applies to the “bowtie” -band FS surrounding X=(/aFe,0) grey contour in Fig. 1D 

with the anticipated energy dependence of the 𝑞 𝑖
ε(𝐸) shown schematically in Fig. 1F.   

 

7   To measure the FS and the superconducting gap structure and sign, we 

image differential tunneling conductance 𝑑𝐼/𝑑𝑉(𝑟 , 𝑒𝑉) ≡ 𝑔(𝑟 , 𝐸) at T=280mK both 

as a function of location 𝑟  and electron energy E. As the FS pockets are so miniscule 

in area (Fig. 1B), the expected range of dispersive intraband BQPI wavevectors is 

very limited 0<|𝑞 𝑖
α,ε(𝐸)| < 0.25(

2𝜋

𝑎𝐹𝑒
), whereas the interband BQPI necessitates 

resolving wavevectors ≥
𝜋

𝑎𝐹𝑒
 . To achieve the 𝑞 -space resolution |𝛿𝑞𝑖

α,ε| ≤

 0.01 (
2𝜋

𝑎𝐹𝑒
) required to discriminate the energy evolution of BQPI on both -band 

and -band necessitates high-precision 𝑔(𝑟 , 𝐸) imaging in very large fields of view. 

We typically use between 60X60 nm2 and 90X90 nm2 (section IV of SM). Local 

maxima of   |𝑔(𝑞 , 𝐸)|, the amplitude Fourier transform of 𝑔(𝑟 , 𝐸), are then used to 

determine the characteristic wavevectors 𝑞 𝑖
α(𝐸)  and 𝑞 𝑖

𝜺(𝐸)  of dispersive 

modulations of BQPI.  Figure 2A shows a typical example of measured 𝑔(𝑟 , 𝐸) with 

its |𝑔(𝑞 , 𝐸)| in Fig. 2C. Here, by using a low resolution STM-tip, we predominantly 

detect the BQPI signal corresponding to the -band surrounding =(0,0) (a 

complete data set is shown in movie S1 and  section IV of SM). The evolution of the 

BQPI triplet   𝑞 𝑖
α(𝐸) (black crosses in Fig. 2C) in the range 2.3meV>|E|>0.8meV at 

280mK is plotted in Fig. 2E. Analogous images for the -band obtained using very 
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high spatial resolution tips sensitive to states at high 𝑘⃗  are shown in Figs. 2, B, D, and 

F (a complete data set is shown in movie S2 and section IV of SM). Because both  

𝑞 2
α(𝐸) and 𝑞 2

ε(𝐸) evolve to finite wavevectors 2𝑘⃗ 𝐹
α and 2𝑘⃗ 𝐹

ε   respectively as 𝐸 → 0 

(Fig. 2, E and F), FeSe superconductivity is in the BCS limit and not near the Bose-

Einstein condensation limit where BQPI wavevectors must evolve to 0 as 𝐸 → 0.  

From the conventional  𝑁(𝐸) ≡ 𝑑𝐼/𝑑𝑉(𝐸) density-of-states spectrum at T=280mK  

(Fig. 2, G and H) we find that the maximum gap on any band is Δα
𝑚𝑎𝑥 = 2.3meV 

whereas another coherence peak occurs at the gap maximum of a second band at 

Δε
𝑚𝑎𝑥 = 1.5meV. The maximum gaps were assigned to each band based on the 

energy evolution of BQPI to the energy limit E → 2.3meV for the -band and E →

1.5meV for the -band. Finally, because no conductance is detected in the energy 

region 𝐸 ≲ 150𝜇𝑒𝑉,  Δmin ≳ 150𝜇𝑒𝑉 for all bands. 

 

8   The FS for both the - and -bands is next determined using the fact that 

the 𝑘⃗  -space loci of CEC ‘banana-tips’ from both Δα(𝑘⃗ ) and Δε(𝑘⃗ ) follow the FS of 

each band (Fig. 1 and Refs 20-22). The measured evolution of the BQPI wavevector 

triplets 𝑞 𝑖
α(𝐸) and 𝑞 𝑖

ε(𝐸) is plotted in Fig. 2, E and F. Figures 3, A and B show the two 

Fermi surfaces of the - and -bands of FeSe determined from BQPI (section V of 

SM) using blue dots plus errors bars for each measured point and blue curves for 

the FS.  The area of the Fermi surfaces extracted by BQPI is consistent with that at 

𝑘𝑧 = 0 (see section III of SM and Fig. S5). Next, we plot schematically the measured 
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magnitude of the energy gap |Δα(𝑘⃗ )| on the -band in Fig. 3A, and the measured 

magnitude |Δε(𝑘⃗ )| on the -band in Fig. 3B, where in both cases we use the width of 

the gray shaded region to indicate |Δ(𝑘⃗ )| and include values of extrema of any 

energy gap from N(E). Although exhibiting extraordinarily anisotropic (Δα
𝑚𝑎𝑥/

Δα
𝑚𝑖𝑛 ≳ 15) C2-symmetric energy-gap structures, FeSe remains a fully gapped or 

nodeless (33-37) superconductor with gap minima Δα,β
𝑚𝑖𝑛 ≳ 150𝜇𝑒𝑉 . 

 

9  One of the key characteristics of iron-based superconductors is whether 

the energy gaps on different bands have opposite signs (2,3). For FeSe this situation 

should be designated ± because the more conventional designation 𝑠± (2,3) is 

rendered inappropriate by orthorhombic crystal/band-structure symmetry. One 

technique for measuring ± pairing symmetry is to detect the enhancement in 

amplitude of 𝑔(𝑞 , 𝐸) at specific BQPI wavevectors when a magnetic field is applied; 

this was proposed to occur because field-induced scattering results in amplified 

quasiparticle interference between regions of  𝑘⃗ -space with same-sign energy gaps 

(38). In Fe(Se,Te) this approach has yielded field-induced QPI intensity reduction 

for wavevectors linking the electron and hole pockets, indicative of ± pairing 

symmetry (39). Yet, there are reservations about this interpretation (40) because: 

(i) a subset of wavevectors where the Fe(Se,Te) field-induced alternations are 

reported occur at Bragg points of the reciprocal-lattice and, (ii) a microscopic 

explanation for the field-induced reductions is absent. To address these issues, 



10 
 
 
 
 
 

another BQPI technique designed to determine ± pairing symmetry has been 

proposed (40). It is based on conventional (non-magnetic) impurity scattering and 

the realization that the particle-hole symmetry of interband scattering interference 

patterns depends on the relative sign of the energy-gaps on those bands (40). As a 

result, the energy-symmetrized 𝜌+(𝑞 , 𝐸)  and energy-antisymmetrized 𝜌−(𝑞 , 𝐸)  

phase-resolved Bogoliubov scattering interference amplitudes 

 

    𝜌±(𝑞 , 𝐸) = 𝑅𝑒{𝑔(𝑞 , +𝐸)} ± 𝑅𝑒{𝑔(𝑞 , −𝐸)}   (4)  

  

have, at the 𝑞  for interband scattering, distinct properties depending on the relative 

sign of the two gaps. Importantly, this approach while not requiring variable 

temperature measurements requires phase-resolved imaging of BQPI in order to 

reliably discriminate 𝑅𝑒{𝑔(𝑞 , 𝐸)} from 𝐼𝑚{𝑔(𝑞 , 𝐸)}. Moreover, the (anti)symmetrized 

functions 𝜌±(𝑞 , 𝐸) must be integrated over a particular 𝑞 -space region. Specifically, 

we focus on 

        𝜌−(𝐸) = ∑ 𝜌−(𝑝 1 + 𝛿𝑞 , 𝐸)𝛿𝑞⃗    (5) 

     

with radius 𝛿𝑞 confining 𝑞 -space to interband scattering processes between two 

distinct energy gaps (Fig. 3C). Given our quantitative knowledge of the FS and 

energy gaps of FeSe (Fig. 3A,B), the 𝜌−(𝑞 , 𝐸) can be predicted specifically for this 
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material with the result shown as solid black curve in Fig. 3F for the FeSe gaps 

Δα(𝑘⃗ ), Δε(𝑘⃗ ) with ± pairing symmetry ( section VI of SM).   

 

10  Experimentally, the challenge is then to achieve phase-resolved imaging 

of BQPI surrounding a single impurity atom in FeSe, such as an Fe site vacancy 

(41,42). Therefore, we measure 𝑔(𝑟 , 𝐸) around individual impurity sites, each in a ~ 

6.5x6.5 nm2 field of view (see e.g. Fig. 3D) and then map the 𝑔(𝑞 , 𝐸) data onto a 

perfectly periodic atomic lattice. The 𝑟 -space origin of this lattice is then set at the 

impurity site (Fig. 3D) and 𝜌−(𝑞 , 𝐸) = 𝑅𝑒{𝑔(𝑞 , +𝐸)} − 𝑅𝑒{𝑔(𝑞 , −𝐸)} is measured. 

Figure 3E is a typical example of 𝜌−(𝑞 , 𝐸) (section VII of SM). Finally, the 𝜌−(𝐸)is 

determined from Eq. 5 with the integration radius 𝛿𝑞 chosen to capture only 

intensity related to scattering between the Δα(𝑘⃗ ) and Δε(𝑘⃗ )  inside the black circle 

in Fig. 3E. The resulting  𝜌−(𝐸)  is shown as black dots in Fig. 3F. Comparison of this 

measured 𝜌−(𝐸)  to its predicted form  for the FeSe gaps Δα(𝑘⃗ ), Δε(𝑘⃗ ) with ± 

symmetry (solid black curve), shows them to be in good agreement especially in 

that 𝜌−(𝐸)  for ± pairing symmetry does not cross zero within the range of energy 

gaps. Thus, within the framework of Ref. 40, these data demonstrate that the sign of 

Δα(k⃗ )  is opposite to that of  Δε(k⃗ ). 

 

11  Figures 4A,B summarize the key results of our study: the measured 

values of 𝛥𝛼(𝑘⃗ ) , 𝛥𝜀(𝑘⃗ ) are both extremely anisotropic but nodeless, each having C2-



12 
 
 
 
 
 

symmetry with deep minima that are aligned along orthogonal crystal axes. 

Recalling that our x-axis is defined to always be the orthorhombic aFe-axis, we have 

found these results to be equally true in both nematic domains. Such a gap structure 

is highly divergent from conventional spin fluctuation pairing theory (23) which 

yields a weak almost isotropic gap on the -band and a strong gap on the band 

but with an anisotropy of opposite 𝑘⃗ -space orientation to that of the experimental 

data (section VIII of SM). Remarkably, however, orbital-selective pairing 

concentrated in the dyz channel can provide an explanation for the observed 𝛥𝛼(𝑘⃗ ) 

and 𝛥𝜀(𝑘⃗ ) . Figure 4B shows our measured angular dependence of Δα(𝑘⃗ ) 

aboutand the equivalent for Δε(𝑘⃗ ) about X=aFe. For a dyz orbital-

selective pairing interaction peaked at wavevector 𝑞 =(/aFe,0), the predicted 

angular dependence of  𝛥𝛼(𝑘⃗ ) and 𝛥𝜀(𝑘⃗ )  is shown in Fig. 4C (section VIII of SM) and 

its comparison to the measured 𝛥𝛼(𝑘⃗ ), 𝛥𝜀(𝑘⃗ ) in Fig. 4B indicates the existence of 

orbital-selective Cooper pairing in FeSe. 

 

12  Microscopically, such orbital-selective Cooper pairing may arise from 

differences in correlation-strength for electrons with different orbital character. For 

example, correlations sufficient to generate incoherence for states with 

predominantly dxy orbital character (11,12) would suppress their pairing within an 

itinerant picture. Moreover, superconducting FeSe must exhibit distinct 
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quasiparticle weights at the FS for states with dxz and dyz orbital character because of 

the nematic state (15,16). Under such circumstances, a Cooper pairing interaction 

focused at wavevector 𝑞 =(/aFe,0) and forming spin-singlets from electrons 

predominantly with dyz orbital character can be modelled by enhancing the strength 

of spin-fluctuation pairing interaction for dyz orbital-character electrons relative to 

that of dxz, while fully suppressing it for those with dxy orbital-character (Ref. 23 and 

section VIII of SM for details). Here, the orbital selectivity of pairing arises from 

quasiparticle weights in the various channels of itinerant spin-fluctuation pairing 

theory, which are hypothesized to be very different owing to orbital-selective 

correlations (section VIII of SM).   Such a model could explain why the-band, 

predominantly associated with the dxy orbital, has weak visibility by ARPES (11,12) 

and BQPI (Figs. 2,3), and could also account for a low energy spin-susceptibility that 

is dominant at 𝑞 =(/aFe,0) consistent with inelastic neutron scattering data (43). By 

projecting this form of orbital-selective pairing interaction onto the Fermi surfaces 

of FeSe (Fig. 3), the gap functions can be predicted by solving the linearized gap 

equation (Ref. 23 and section VIII of SM).  The resulting predicted 𝛥𝛼(𝑘⃗ ) and 𝛥𝜀(𝑘⃗ )  

(solid curves Fig. 4C) are quantitatively consistent with the extremely anisotropic 

structure and sign reversal of the measured gap functions (Fig. 4A,B). Moreover, as 

the magnitudes of 𝛥𝛼(𝑘⃗ ) and 𝛥𝜀(𝑘⃗ ) (solid curves Figs. 4B) track the strength of dyz 

orbital character on both bands (dashed curves Fig. 4C; Ref. 23,24,25; section II of 

SM), the influence of orbital-selectivity on the Cooper pairing is manifest directly. 
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Overall, these data reveal a unique new form of correlated superconductivity based 

on orbital-selective Cooper pairing of electrons which, for FeSe, are predominantly 

from the dyz orbitals of Fe atoms. Such orbital selectivity may be pivotal to 

understanding the microscopic interplay of the quantum paramagnetism, nematicity 

and high temperature superconductivity. 
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Figure 1 Bogoliubov Quasiparticle Interference Model for FeSe   

(A) Top view of FeSe crystal structure. Dashed lines represent the 1-Fe unit cell, and 

the actual unit cell is shown using solid lines. The unit cell of FeSe is distorted in the 

nematic phase with aFe>bFe. Throughout this paper we define the 𝑥-axis, 𝑘⃗ 𝑥-axis and 

𝑞 𝑥-axis to all be parallel to aFe-axis, so that labels of orbitals like dxy or dyz or 𝑘⃗ -space 

locations and states, are equally valid in both nematic domains. 

(B) In the nematic phase with orthorhombic crystal symmetry, the FeSe Fermi surface 

consists of a hole-like -band around and an electron-like -band around 

X=aFe; the color code indicates the regions of Fermi surface dominated by 

states with primarily dyz (green), dxz (red) and dxy (blue) orbital character. An 

anticipated third band, the -band around Y=bFe) has not yet been observed by 

spectroscopic techniques.  

(C) Constant-energy-contours (CEC) of Bogoliubov quasiparticles for the gapped -

band around. The CEC are color-coded to indicate increasing energy. A 

schematic, ellipsoidal normal state Fermi surface is shown using a grey dashed 

contour. Predominant scattering interference occurring between the ‘tips’ of the CEC 

should produce a triplet of characteristic BQPI wavevectors 𝑞 1
α(𝐸), 𝑞 2

α(𝐸), 𝑞 3
α(𝐸) 

(black arrows).  

(D) Same as (C) but for the gapped -band aroundX=aFe,0).  

(E) The expected energy dependence of the -band wavevector triplet 

𝑞 1
α(𝐸), 𝑞 2

α(𝐸), 𝑞 3
α(𝐸) in (C); these are color-coded to indicate increasing energy. The 

black diamond symbolizes the starting point of 𝑞 3
α where Δ𝛼 = 𝑚𝑎𝑥.    

(F) The expected energy dependence of the -band wavevector triplet 

𝑞 1
ε(𝐸), 𝑞 2

ε(𝐸), 𝑞 3
ε(𝐸) color-coded by energy. The black diamond symbolizes the end 

point of 𝑞 2
ε where Δε = 𝑚𝑖𝑛.  
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Figure 2  Visualizing Bogoliubov Quasiparticle Interference in FeSe   
To achieve sufficient 𝑞 -space resolution we use an approximately 90 nm X 90 nm 

field-of-view and image 𝑔(𝑟 , 𝐸) ≡ 𝑑𝐼/𝑑𝑉(𝑟 , 𝐸 = 𝑒𝑉)  with bias modulation of 

100V at T=280mK (section IV of SM).  

 

(A) Typical measured 𝑔(𝑟 , 𝐸) using a low resolution STM-tip which predominantly is 

sensitive to -band effects.  

(B) Typical 𝑔(𝑟 , 𝐸)  measured  with very high spatial resolution tips, which emphasize 

very short wavelength BQPI, and are predominantly sensitive to -band effects. 

(C) Measured |𝑔(𝑞 , 𝐸)| derived from (A) where the BQPI wavevector triplet 𝑞 𝑖
α(𝐸) is 

identified by black crosses at the points of maximum amplitude. The blue crosses 

indicate the (±2𝜋/8𝑎𝐹𝑒 , ±2𝜋/8𝑏𝐹𝑒) points. 

 (D) Measured |𝑔(𝑞 , 𝐸)| derived from (B) where the BQPI triplet 𝑞 𝑖
ε(𝐸) is identified by 

black crosses at the points of maximum amplitude. The blue crosses indicate the 

(±2𝜋/8𝑎𝐹𝑒 , ±2𝜋/8𝑏𝐹𝑒) points. 

(E)  Measured evolution of 𝑞 1
α(𝐸), 𝑞 2

α(𝐸), 𝑞 3
α(𝐸). The |𝑔(𝑞 , 𝐸)| data is shown in movie 

S1. The black diamond is the first 𝑞 3
α(𝐸 =  −2.3 𝑚𝑒𝑉) data point. 

 (F)  Measured evolution of 𝑞 1
ε(𝐸), 𝑞 2

ε(𝐸), 𝑞 3
ε(𝐸). The |𝑔(𝑞 , 𝐸)| data is shown in movie S2. 

The black diamond corresponds to the last 𝑞 2
ε(𝐸 = −0.3 𝑚𝑒𝑉) data point. 

 (G) Measured 𝑁(𝐸); black arrows indicate the maximum energy gap on any band, 

which we determine from BQPI to be on the -band (Fig. 3).  Red arrows indicate 

a smaller energy gap on a second band which from BQPI is assigned to the -band 

(Fig. 3). 

 (H)  Calculated 𝑁(𝐸) from the band-structure and gap structure model (supplementary 

text section II and VIII). 
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Figure 3 BQPI Determination of Fermi Surfaces and Energy Gaps 

The BQPI data analysis steps yielding the results in Fig. 3 is explained in full 

detail in section V of SM.  

(A)  The Fermi surface of -band is measured using the BQPI triplet 

𝑞 1
α(𝐸), 𝑞 2

α(𝐸), 𝑞 3
α(𝐸)  and shown as black dots with error bars. Energy-gap 

magnitude for the -band also measured using energy dependence of the BQPI 

triplet 𝑞 1
α(𝐸), 𝑞 2

α(𝐸), 𝑞 3
α(𝐸) plus the values of maximum and minimum energy gap 

from N(E) in 2G. 

 (B) Fermi surface of -band measured using the BQPI triplet 𝑞 1
ε(𝐸), 𝑞 2

ε(𝐸), 𝑞 3
ε(𝐸) and 

shown as black dots with error bars. Energy-gap magnitude for the -band 

measured using energy dependence of the BQPI triplet 𝑞 1
ε(𝐸), 𝑞 2

ε(𝐸), 𝑞 3
ε(𝐸)  and 

maximum/minimum energy gap from N(E) in 2G. 

(C) 𝑘⃗ -space schematics of FeSe interband scattering wavevector 𝑝 1  between - and-

bands which connects gaps of opposite sign in the Δ+− scenario. 

(D) Measured 𝑇(𝑟 )  topograph centered on a typical individual impurity site in a ~ 

6.5x6.5 nm2 field of view. The surface (upper) Se sites are shown using red x 

symbol, and the Fe sites using yellow +. 

(E) Typical measured 𝜌−(𝑞 , 𝐸) = 𝑅𝑒{𝑔(𝑞 , +𝐸)} − 𝑅𝑒{𝑔(𝑞 , −𝐸)} from BQPI 𝑔(𝑟 , 𝐸)  at 

E=1.05meV in the energy range within both Δα and Δε. Complete 𝜌−(𝑞 , 𝐸)  is shown 

in movie S3. 

(F) Predicted 𝜌−(𝐸)  for ± pairing symmetry using the band/gap structure of FeSe 

(sections II, VI and VIII of SM and Fig 3), shown as solid black curve. The 

measured  𝜌−(𝐸)  for FeSe (black dots) is calculated by integration over the 𝑞 -

space region identified by the black circle in 4E. Predicted  𝜌−(𝐸) for no gap sign 

change in FeSe shown as solid red curve. The vertical dashed black line marks the 

energy of the maximum superconducting gap. 
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Figure 4  Orbitally Selective Cooper Pairing in FeSe 

A. Measured 𝑘⃗ -space structure of anisotropic energy gaps of FeSe (Fig. 3). The red 

and blue colors indicate the different signs of the two gap functions. 

B. Measured angular dependence of FeSe superconducting energy-gaps Δα(𝑘⃗ ) about 

=and the equivalent for Δε(𝑘⃗ ) about X=aFe,0) from Fig. 3A,B.  

C. Predicted angular dependence of Δα(𝑘⃗ ) and Δε(𝑘⃗ ) for an interband pairing interaction 

that is peaked at 𝑞 =(/aFe,0) and for which pairing is orbital selective, occurring 

predominantly for electrons with dyz orbital character (section VIII of SM). The 

dashed grey curves show the dyz orbital character of states at the -band and -band 

Fermi surfaces. 
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Materials & Methods 

The FeSe single crystals were prepared using KCl/AlCl3 chemical-vapour transport (1) and 

were thoroughly characterized using resistivity, magnetization and x-ray diffraction measurements 

(1-4). They show a structural transition at Ts = 87–89 K and a superconducting transition at Tc = 

8.7–8.8 K.  

For study of the samples in the Spectroscopic Imaging-Scanning Tunneling Microscope (SI-

STM), each single crystal is glued flat onto the end of a cylindrical brass sample holder using silver 

epoxy H20E from Epotek. This provides excellent heat and electrical conductivity at low 

temperatures and yields a clean flat unstressed cleave of the crystal with high reliability. All 

samples are inserted slowly from a room temperature load-lock into the cryogenic environment 

and then cleaved in situ in cryogenic ultra-high vacuum at 𝑇 < 20 𝐾. 

Supplementary Text 

I. CRYSTAL STRUCTURE OF FeSe 

The high temperature structure of FeSe belongs to the tetragonal P4/nmm space group with 

the corresponding lattice parameters a= 3.77 Å and c= 5.52 Å (5,6,7). Note that here a is the 

distance between nearest neighbor selenium atoms lying in the same plane. The Fe-Fe nearest 

neighbor distance is then 𝑎/√2. On cooling, FeSe undergoes a transition to Cmma orthorhombic 

structure with the lattice parameters a= 5.31 Å, b= 5.33 Å and c= 5.48 Å (5,7). Here a and b 



correspond to the two next nearest neighbor distances between selenium atoms lying in the same 

plane (Fig. S1). In the orthorhombic phase, the two inequivalent Fe-Fe distances are related to the 

lattice parameters via 𝑎𝐹𝑒 = 𝑏/2  and 𝑏𝐹𝑒 = 𝑎/2.  These distances are the most convenient 

parameters for the discussion of the electronic structure of FeSe, and hence we adopt them 

throughout this paper.  The convention 𝑎𝐹𝑒 > 𝑏𝐹𝑒 is chosen to match earlier work (8,9) and for 

clarity of communication of our key results, even though for the orthorhombic Cmma lattice 

parameters 𝑎 < 𝑏 < 𝑐 is usually enforced.  

 

II. TIGHT-BINDING MODEL FOR FeSe 

For the present investigation, we use a band structure model, introduced in (10,11), that 

includes a parameterization of site-centered (Δ
𝑠
) and bond-centered (Δ

𝑏
) orbital order as well as 

spin-orbit coupling (12). Effects of interactions and correlations of the quasiparticles (in the normal 

state, but including the nematic order) are modeled by allowing the hoppings to be modified to 

match the spectral positions of the quasiparticle peaks observed in ARPES (9,13 ,14) and BQPI 

(this work). Note that this approach takes into account the real part of the self-energy corrections 

by fitting to the experimentally observed spectral positions 𝐸𝑖(𝒌). Specifically, the band structure 

is determined by the normal state Hamiltonian 𝐻𝑁 =  𝐻0 + 𝐻𝑂𝑂 + 𝐻𝑆𝑂𝐶, where 𝐻0 (in real space 

notation) is given by 

𝐻0 = ∑ 𝑡𝒓−𝒓′
𝑎𝑏 𝑐𝑎,𝒓

† 𝑐𝑏,𝒓′

𝒓,𝒓′,𝑎,𝑏

(𝑆1) 

where 𝑎, 𝑏  are orbital labels and 𝒓, 𝒓′ are lattice sites. For the orbital order term, we use the 

momentum space representation, 

𝐻𝑂𝑂 = Δ𝑏(𝑇) ∑(cos(𝑘𝑥) − cos(𝑘𝑦)) (𝑛𝑥𝑧(𝒌) + 𝑛𝑦𝑧(𝒌)) + Δ𝑠(𝑇) ∑ (𝑛𝑥𝑧(𝒌) − 𝑛𝑦𝑧(𝒌))

𝒌𝒌

(𝑆2) 

Finally, the spin orbit coupling is given by 

𝐻𝑆𝑂𝐶 = 𝜆𝑳 ⋅ 𝑺 (𝑆3) 



Keeping in mind the correspondence between a 5-band and a 10-band models (11) which is 

exact for 𝑘𝑧 = 0 and 𝑘𝑧 = 𝜋 in the absence of spin-orbit coupling (SOC), we use a 5-band model 

to represent the band structure away from the band crossings that have splittings induced by SOC. 

However, the splitting at 𝛤 needs to be taken into account (15,16). The hoppings for the tight-

binding model are therefore given in the 5-band representation in the separate attached file.  

The resulting band structure is shown in Fig. S2. It consists of a hole-like -band with 

ellipsoidally shaped Fermi surface surrounding =(0,0) whose major axis is aligned to the 

orthorhombic bFe-axis; an electron-like “bow-tie”-shaped -band surrounding X=(/aFe,0) whose 

major axis is aligned to the orthorhombic aFe-axis; an electron-like -band surrounding Y= 

(0,/bFe). We define the x-axis (y-axis) to always be parallel to the orthorhombic aFe-axis (bFe-

axis). 

The values of the orbital order terms, as determined from experimental measurements of 

normal state QPI to be discussed elsewhere, are Δ
𝑠

= 9.6 meV, Δ
𝑏

= −8.9 meV, and the SOC 

constant is fixed to λ = 20 meV. These values also agree with the observed splitting above the 

nematic ordering temperature (16) assuming that the SOC is unaffected by temperature. 

Because they are key to interpreting the data, we show in Fig. S3 the kz=0 Fermi surface (FS) 

of our band structure and the contributions of the dxz, dyz, and dxy orbitals on the FS. Greater line 

thickness corresponds to larger orbital contribution throughout.  

In order to visualize the influence of the orbital order terms on the Fermi surface topology, 

we display the 10-band spectral functions at 𝜔 = 0 both above and below the structural transition 

TS which correspond to Δ
𝑠

= 0  meV, Δ
𝑏

= 0  meV and Δ
𝑠

= 9.6  meV, Δ
𝑏

= −8.9  meV, 

respectively (Fig. S4). Above the structural transition, without orbital order, the Fermi surface is 

C4-symmetric as reported by ARPES Ref. 14. 

Overall, our band structure parametrization not only agrees in its spectral positions 𝐸𝑖(𝑘) with 

those of experimental observations, but is also consistent with deductions of the orbital content of 

the Fermi surface (9). Moreover, at low energies it does not show any unexpected behavior as 



compared to investigations that include correlations ( 17 ). Its general correspondence with 

experiment is discussed in detail in the next section. 

III. CONSISTENCY OF BQPI, QO AND ARPES FOR FeSe FERMI SURFACES 

This model band structure (Section II) is in close agreement with key experimental 

observations including: 

A. BQPI and ARPES at 𝑘𝑧 = 𝜋 

Figure S5 shows directly the agreement of our model band structure to the position of the 

Fermi surface that we measure using BQPI (red dots), as presented in the main text Fig. 3. The 

black line is the calculated / tight-binding / model Fermi surface at 𝑘𝑧 = 0 from our band-structure 

(Section II); it agrees with the measured positions within the experimental error bars. At the same 

time, the dispersion of our band-structure along 𝑘𝑧 is significant and agrees well with the findings 

from a recent ARPES investigation (13). In Fig S5, we also reproduce the spectral function 

measured by ARPES (14) at 𝑘𝑧 = 𝜋, and it compares very well to the model Fermi surface at 𝑘𝑧 =

𝜋 (blue line). The superposition of copies of the basic Fermi surface spectral-function features but 

rotated by /2, is due to the existence of both orthorhombic domains in the ARPES study; 

obviously our band structure model does not reproduce these effects.  Note that the same 

experimental work also revealed the Fermi surface at  𝑘𝑧 = 0 which gives very similar spectral 

positions as the ones obtained from BQPI. Therefore, we concentrate on the use of the model 

system for 𝑘𝑧 = 0 whenever carrying out simulations for comparison with the data. 

B. Quantum oscillations 

For the calculation of the extremal Fermi surface areas we use the 10-band analog of our band 

structure (11) that additionally introduces small hybridizations on the electron pockets yielding an 

orbit of the “inner” electron pocket and the “outer electron” pocket. The extremal areas obtained 

within this method would give rise to quantum oscillation frequencies of: 66T (inner electron 

pocket), 199 T (hole pocket at 𝑘𝑧 = 0), 579T (outer electron pocket), and 651 T (hole pocket at  

𝑘𝑧 = 𝜋); results were rounded to last digit. The measured extremal frequencies for magnetic field 

angle 𝜃 = 0 are reported as values in the range of 60 T – 114 T, 200 T – 207 T, 530 T – 580 T, 

and 660 T – 680 T, see table I in Ref. (13), and references therein. Thus, there is good 



comprehensive agreement within the experimental uncertainties between the band structure 

described in Fig. S2 and the quantum oscillation data.  

IV. BQPI DATA FOR FeSe 

A. BQPI Data Acquisition 

Differential tunneling conductance 𝑑𝐼/𝑑𝑉(𝑟, 𝑒𝑉) ≡ 𝑔(𝑟, 𝐸) was measured at T=280mK, and 

as a function of both location 𝑟 and electron energy E=eV where V is the tip-sample bias voltage. 

We use fields of view in the range of 60nmx60nm to 90nmx90nm square and raster between 

128x128 to 400x400 pixel square to get high signal-to-noise ratio and sufficient q-space resolution, 

and a typical bias modulation of V=100 eV. The same measurements were carried out on both 

nematic domains of multiple crystals and all the results presented herein are supported by this data 

set. 

Three types of tips were repeatably observed during these studies. Figure S6 presents 

conductance maps 𝑔(𝑟, 𝐸) at -1.1 meV measured with the three different tip types (for clarity 

shown in smaller fields of view in q-space than the original data) along with the amplitude of their 

corresponding Fourier transforms |𝑔(𝑞, 𝐸)|. The tips differ in their ‘atomic’ sharpness, with the 

‘sharper’ tips being created when the atomic configuration at the end of the tip changed while 

scanning across the surface at low tunneling junction resistance. Figs. S6A and S6B represent the 

expected case where the STM tip is sensitive to the BQPI signal from both the α- and ε-pocket 

simultaneously. It is possible in principle to extract the FS and energy gaps Δα(𝑘⃗⃗) and Δ
ε
(𝑘⃗⃗) from 

these data alone, and our measurements of them are in good agreement with the results presented 

in the main text. However, we found that it is also possible to simplify the situation and to measure 

the properties of the two bands individually. Figs. S6C and S6D contain the results for a tip that is 

sensitive primarily to the α-pocket. This is achieved by using a lower spatial resolution tip which 

is obviously far more sensitive to the long wavelength BQPI modulations that occur in intra-band 

scattering in the center of the BZ. Alternatively, Figures S6E and S6F show the results form a tip 

that is predominantly sensitive to the scattering interference from the ε-pocket. Momentum 

dependence of tunneling tips is discussed in more detail in Ref. (18). In the following we will call 

these tips ‘tip αε’, ‘tip α’, and ‘tip ε’. All panels in Fig. S6 and S7 have been labeled depending on 

which tip was used during the measurement.  



 

As can be seen from the atomic contrast in Figs. S6A, S6E the tips sensitive to the the ε-

pocket BQPI possess excellent real-space resolution. In order to compare real-space resolution and 

q-space sensitivity to the tip that is primarily sensitive to the α-pocket BQPI we show in Fig. S7A, 

S6B constant current topographs recorded for the same setup current and setup bias but with two 

different tips: ‘tip α’ and ‘tip αε’. The topographs and the corresponding amplitudes of their Fourier 

transforms in Fig. S7C, S7D exhibit the same behavior as seen in Fig. S6. Superior real space 

resolution goes hand in hand with sensitivity to high-q phenomena as expected. The ‘sharper’ tip 

is sensitive to even the signal from ‘Umklapp’-scattering processes around the Se-Bragg peak 

which has been marked with a white circle. Additionally, the ‘sharper’ tip is sensitive to interband 

scattering between the electron and the hole pocket at (
𝜋

𝑎𝐹𝑒
, 0) which is absent for the lower 

resolution -tip, see Fig. S7C. We find identical high-q properties for the atomically ‘sharp’ tip 

which predominantly detects the ε-pocket for low q-values, ‘tip ε’. 

We assign the BQPI triplet of wavevectors  𝑞⃗𝑖
α,ε(𝐸) to the α- and ε-pocket based on the energy 

evolution of their intensity-maxima, which can be compared to JDOS (Joint Density of States) 

simulations of the expected BQPI using our tight-binding model in Fig. 1. The JDOS simulations 

will be discussed at the end of this section in further detail, and the combined 𝑔(𝑟, 𝐸), |𝑔(𝑞⃗, 𝐸)| 

data plus relevant JDOS simulations are added as supplementary movies S1 and S2.  

B. BQPI Data Processing Steps 

In Fig. S8 we present the sequence of steps used to optimize the signal-to-noise ratio of the 

BQPI data. The three steps are symmetrization, averaging, and Gaussian core subtraction in Fourier 

space. We would like to emphasize that no unfolding of BQPI data with respect to the 1-Fe- and 2-

Fe-unit cell picture takes place within these steps, and that the symmetrization does not enforce C2 

symmetry on the data. 

For the symmetrization we take advantage of the mirror symmetry axes present in the 

underlying k-space structure, see also Fig. S4. As BQPI consists of scattering between parts of 

constant energy contours in k-space these mirror symmetry axes carry over into q-space. The raw 

amplitude Fourier transform |𝑔(𝑞⃗, 𝐸)| is symmetrized via reflection about the mirror symmetry 

axes displayed in Fig S8A.  



In order to further increase the signal-to-noise ratio we use a three-by-three pixel averaging 

filter on the symmetrized amplitude Fourier transform |𝑔(𝑞⃗, 𝐸)| in Fig. S8B. The result is shown 

in Fig. S8C. The last step is a Gaussian core subtraction in Fourier space which corresponds to a 

long wavelength filter in real space. As can be seen in Fig. S8D this subtracts intensity for very 

small q-vectors. 

C. JOINT DENSITY OF STATES BQPI SIMULATIONS  

In order to compare the observed BQPI to the proposed tight-binding and pairing model we 

simulate 𝐽𝐷𝑂𝑆(𝒒, 𝜔) = ∫ 𝐴(𝒌 + 𝒒, 𝜔)𝐴(𝒌, 𝜔)𝑑𝒌  with the spectral function 𝐴(𝒌, 𝜔)  given by 

𝐴(𝒌, 𝜔) = −
1

𝜋
𝐼𝑚{∑ 𝐺𝑎𝑎(𝒌, 𝜔)𝑎 }, where the sum runs over the orbitals 𝑎 . Here 𝐺𝑎𝑎(𝒌, 𝜔) =

𝑍𝑎𝐺𝑎𝑎
0 (𝒌, 𝜔) is the dressed Green’s function, and the Z-factors for the orbitals are the same as used 

for the calculation of the pairing interaction (see section VIII for more details), and given as 𝑍𝑎 ∈

{0.27152, 0.97172, 0.40482, 0.92362, 0.59162}.  Furthermore, we separate the JDOS into partial 

JDOS simulations by restricting the integration area to ¼ of the Brillouin zone containing the 

corresponding pocket. Here to mimic the sensitivity of our tunneling tips to BQPI from different 

bands, we compute the partial JDOS for the α-pocket, for the ε-pocket, and the sum of both. This 

is a valid approach as the two pockets are well-separated in k-space. The results in Fig. S9 are in 

excellent agreement with the ‘banana tips’ model, as it clearly visualizes the three (independent) 

dominant scattering vectors {𝒒1, 𝒒2, 𝒒3} for each pocket, which are transformed into a set of eight 

through symmetry operations. Overall we find very good agreement between experiment and 

JDOS simulation, and deviations between the two can for example be ascribed to the static 

structure of the scatterers themselves which the JDOS simulation cannot take into account. The 

relevant energies for the JDOS simulations are part of the supplementary movies S1 and S2. In 

addition to the movies, we present typical measured BQPI data at four energies, and comparison 

to partial JDOS, for both the  - and -pocket in Fig. S10 and Fig. S11. 

V. EXPERIMENTAL DETERMINATION OF FS AND ENERGY GAPS 

Consider a standard Bogoliubov spectrum of a superconductor with an anisotropic gap. 

𝜖𝒌 = ±√𝐸𝒌
2 + Δ𝒌

2 (𝑆4) 



Without loss of generality, we can then define a constant-energy-contour (CEC) in k-space at 

a specified energy 𝜖′ > 0 (because of the particle-hole symmetry, all observations also apply to 

−𝜖′ < 0) by the following equation: 

𝜖′ = √𝐸𝒌
2 + Δ𝒌

2 (𝑆5) 

Let’s further impose that the contour is within the superconducting gap meaning 𝜖′ < 𝛥𝑚𝑎𝑥. 

As long we are in the region of k space where 𝜖′ > 𝛥𝒌, we expect two types of k-space solutions, 

one with 𝐸𝒌 < 0 and one with 𝐸𝒌 > 0. These two types of solutions will connect at specific k 

points where 𝜖′ = 𝛥𝒌, and hence 𝐸𝒌 = 0, to create closed contours reminiscent of bananas. (See 

Fig. S12A below.) Since 𝐸𝒌 = 0, these points (‘banana-tips’) lie on the normal state FS of the 

corresponding band by definition.  

Within the JDOS picture, the modulations in the density of states (and hence dI/dV) due to 

impurity scattering will be dominated by the q-vectors connecting k-space regions with high 

spectral weight. For a superconductor with an anisotropic gap, such regions are exactly the tips of 

CEC discussed above (Fig. S12B). For that reason, tracking the evolution of the q-vectors 

associated with the tips of the CEC allows one to extract both the Fermi surface and the k-space 

structure of the gap. 

Thus for FeSe, using the measured BQPI wavevector sets  𝑞⃗𝑖
α,ε(𝐸) shown in Fig. 3, we 

determine the two FS by using Eqn. 1 to find the (kx,ky)locations of all the ‘banana-tips’ for 

both the α- and ε-bands. These FS are shown in Fig. 3 of the main text. Next, we use the same 

wavevector sets  𝑞⃗𝑖
α,ε(𝐸) in conjunction with the two FS, to plot the energy 𝐸 = Δ associated with 

the observation of BQPI for each FS wavevector (kx,ky). The resulting functions are Δα(𝑘⃗⃗) and 

Δε(𝑘⃗⃗). 

In the ‘banana-tips’ model, the dispersion of the BQPI wavevector sets  |𝑞⃗𝑖
α,ε(𝐸)|  is 

determined by the topology of the Fermi surface and the k-space structure of the gap as discussed 

above. Because all wavevectors of a set are interdependent due to the geometric restrictions 

generated by the shape of the Fermi surface, it is possible to check that the extracted BQPI 

wavevector sets  𝑞⃗𝑖
α,ε(𝐸) are internally consistent with one another. Figure S13 demonstrates this 



consistency. There is very good agreement between the dispersion of the extracted BQPI 

wavevector sets  |𝑞⃗𝑖
α,ε(𝐸)| and the expected dispersion based on the ‘banana-tips’ model. 

VI. HAEM PREDICTIONS FOR SIGN CHANGE BETWEEN GAPS 

Following Ref. (19), we perform a calculation of the BQPI response within the T-matrix 

approach. For this purpose, the Nambu Hamiltonian 𝐻 = (
𝐻𝑁 𝛥

𝛥𝑇 −𝐻𝑁
𝑇) as a matrix in orbital space 

is set up where the Hamiltonian is given in section II. The superconducting gap is taken from a 

self-consistent calculation, (20,21) using the same band and pairing as outlined in the main text 

Figs 3,4 and section VIII. Next, a weak (attractive) nonmagnetic impurity is modeled as a potential 

scatterer on a single Fe position, motivated by the Fe centered defects seen in the present 

Spectroscopic Imaging – Scanning Tunneling Microscopy (SI-STM) experiment and also by other 

groups (22,23). These defects are also observed in the monolayer FeSe (24). Setting 𝐻𝑖𝑚𝑝 =

 𝑉0𝛿𝑎𝑏  as a constant on-site scatterer at position 𝒓∗ in orbital space, we use the additional impurity 

term in the Hamiltonian 𝐻𝑖𝑚𝑝 =  𝑉0 ∑ 𝑐𝑎,𝒓∗
† 𝑐𝑎,𝒓∗𝑎  which describes the scattering from an impurity 

centered at a Fe lattice position in the approximation of a short-range potential. Then we solve the 

T-matrix using the local Green’s function 𝐺0(𝜔) = ∑ 𝐺𝒌
0

𝒌  where 𝐺𝒌
0 = (𝜔 + 𝑖0+ − 𝐻𝒌)−1 . 

Noting that the impurity potential is constant in momentum space, we obtain the Green’s function 

in the presence of scatterer as 𝐺𝒌,𝒌′(𝜔) = 𝐺𝒌−𝒌′
0 (𝜔) + 𝐺𝒌

0(𝜔)𝑇(𝜔)𝐺𝒌′
0 (𝜔) . The T-matrix is 

obtained from the equation 𝑇(𝜔) = [1 − 𝑉𝑖𝑚𝑝𝐺0(𝜔)]
−1

𝑉𝑖𝑚𝑝  such that the change in the local 

density of states is given by 𝛿𝑁(𝒒, 𝜔) =
1

𝜋
𝑇𝑟{𝐼𝑚 ∑ 𝐺𝒌

0(𝜔)𝑇(𝜔)𝐺𝒌+𝒒
0 (𝜔)𝒌 }.  

Theoretically, the quasiparticle scattering between states with sign-changing order parameter 

yields a characteristic resonant energy dependence in 𝜌−(𝜔), the anti-symmetrized QPI response, 

integrated over a finite momentum space corresponding to relevant inter-band scattering processes 

as discussed in Ref. (19). To pick out only the inter-band scattering contributions in FeSe which 

are sign-changing in the 𝛥± scenario, we integrate over an area in momentum space centered at 

(𝜋, 0) to obtain 𝜌(𝜔) = ∑ 𝛿𝑁(𝒒, 𝜔)′
𝒒  and construct 𝜌−(𝜔) = 𝜌(𝜔) − 𝜌(−𝜔). These calculations 

are done for two different gap structures that yield the same density of states because they differ 

only by a relative sign between the order parameters on the electron band and the hole band. The 



results for the calculations are presented in Fig. 3F. The quantity 𝜌−(𝜔) changes sign at an energy 

within the superconducting gap for the sign-preserving order parameter Δ++ . For the sign-

changing order parameter Δ±, there is however no change of sign in 𝜌−(𝜔) up to roughly the 

maximum superconducting gap, see Figs. 3F, S15E and S15F. 

 

 

VII. SINGLE IMPURITY SITE MEASUREMENTS IN FeSe 

A. Extracting 𝝆−(𝝎) from differential tunneling conductance measurements 

In order to extract 𝜌−(𝜔)  from the experiment we take advantage of the fact that the 

differential tunneling conductance 𝑔(𝑟, 𝜔) is proportional to the local density of states of the 

sample 𝜌(𝑟, 𝜔). Next we construct in Fourier space the real part of the anti-symmetrized 

differential tunneling conductance 𝜌−(𝑞⃗, 𝜔) = 𝑅𝑒{𝑔(𝑞⃗, +𝜔)} − 𝑅𝑒{𝑔(𝑞⃗, −𝜔)} and integrate in a 

circular region around (𝜋, 0)-scattering which connects the electron and hole pocket at 𝑋 and Г, 

respectively: 𝜌−(𝜔) = ∑ 𝜌−(𝑞⃗⃗⃗, 𝜔)
(𝑞𝑥−𝑝1,𝑥)

2
+(𝑞𝑦−𝑝1,𝑦)

2
≤𝛿𝑞2 . Here 𝒑⃗⃗⃗1 =  (𝑝1,𝑥, 𝑝1,𝑦) corresponds to the 

position of (
𝜋

𝑎𝐹𝑒
, 0)-scattering in q-space, and the radius used for integration 𝛿𝑞 is chosen so that 

we capture only intensity related to scattering between the electron and hole pocket at 𝑋 and Г. 𝛿𝑞 

is thus determined by the size of the two pockets. 

However, before one computes 𝜌−(𝜔), any shift of the scatterer away from the origin of the 

Fourier transform (FT) needs to be corrected as exactly as possible. The correction is necessary as 

any shift of the scatterer, i.e. the impurity, in real space away from the origin of the FT creates an 

additional phase term in q-space according to the shift theorem of FTs: 𝐹𝑇{𝑓(𝑟 − 𝑟𝟎)} =

𝑒−𝑖𝑞⃗⃗ 𝑟𝟎𝐹𝑇{𝑓(𝑟)}. Fortunately, the shift theorem allows one to correct the data. The experimental 

challenge lies therefore in determining the spatial position of the scatterer with high precision. 

As mentioned in section VI, the dominant type of defect in FeSe is centered on an Fe-atom. 

We know the relative position of Se- and Fe-atoms from the crystal structure. FeSe cleaves 

between two layers of selenium so that it is a reasonable assumption that SI-STM images the Se-



atoms. Before we determine the spatial shift of the impurity we correct the data for distortions due 

to non-orthogonality in the x/y axes of the piezoelectric scanner tube using the Lawler-Fujita 

algorithm (25). After that we shift the data to the pixel corresponding to the origin of the FT. 

The measured 𝜌−(𝜔) is shown in Fig. S14. To increase the signal-to-noise ratio we averaged 

over adjacent energy values of 𝜌−(𝜔). Note that the small Fermi surface pockets clearly separate 

scattering between states from and to different pockets, e.g. there are no intraband scattering events 

at the relative energy scale that are picked up by the integral. Resolving the structure of the tiny 

Fermi surface pockets is an experimental challenge because large FOV are required in STM, but 

at the same time it allows one to clearly separate intraband contributions.  In order to test how 

robust the result is under change of the integration area, we used three circular areas as depicted 

in Fig. S14D. The radius for the smallest, blue circle was three quarter the size of the medium 

black circle, and the radius of the biggest, magenta circle was five quarters the size of the medium 

black circle. As can be seen in Fig. S14F, the results are very consistent, and the biggest change 

occurs for energies outside the superconducting gap. For clarity and easier comparability 𝜌−(𝜔) 

has been normalized to its maximum value for all three cases. 

B. Repeatability of HAEM Procedure 

In order to test the generality of the result for 𝜌−(𝜔) in section VII A we repeat the analysis 

for two more impurities. The second impurity was in the same sample studied with the same tip, 

and its relative position to the first impurity can be seen in Fig. S15A-C. The third impurity was 

in a second sample, and was examined with a physically different tip. Its position is marked in the 

topograph in Fig. S15D.  

For both additional impurities the results agree best with a sign-changing superconducting 

order parameter, see Figs. S15E and S15F. In order to make the visual comparison of experiment 

and theory easier, 𝜌−(𝜔) has been normalized to its maximum value for all three impurities and 

the theoretically predicted case of Δ
+−

. Theoretically predicted 𝜌−(𝜔) for the case of Δ
++

 has 

been normalized so that the relative magnitude to the theoretically predicted case of Δ
+−

 is 

conserved. There is no signature of a sign change in 𝜌−(𝜔)  within 𝜔 ≤ Δ  which is a clear 



indication for the Δ
+−

 scenario and rules out the sign-preserving order parameter within our 

modeling.  

Importantly, the  𝑔(𝑟, 𝜔) and  𝜌−(𝜔)  at the impurity studied in a second sample with a 

physically different tip, agrees remarkably well with the first, isolated impurity. From that we 

conclude that the result supporting sign-changing superconducting order is both very robust and 

intrinsic to the material studied. 

C. Defect induced in-gap states and disappearance of 𝝆−(𝒒⃗⃗⃗, 𝝎)-signal above TC 

We additionally analyzed the single defect by taking dI/dV line-cuts through it along the x- and y-

direction. Fig. S16 presents dI/dV line-cuts through the single defect. The differential conductance 

inside the superconducting gap exhibits an increase at the defect location. The effect is small, but 

clearly visible.   

In order to confirm that the 𝜌−(𝑞⃗, 𝜔)-signal originates from scattering inside the superconducting 

state, and is not for example due to effects of the band structure or the defect itself we analyze a 

defect at T = 4.2 K < TC and T = 10.0 K > TC. Setup voltage (Vs = -50 mV), tunneling current (I = 

500 pA), and modulation voltage for the lock-in measurement (VM = 1 mV) were identical in both 

measurements. As shown in Fig. S17A-D the signal related to scattering between the α- and ε-

pocket vanishes above TC. At the same time no sign of the superconducting gap remains visible in 

spectroscopy above TC, see Fig. S17E. From that we conclude that the majority of the 𝜌−(𝑞⃗, 𝜔)-

signal stems from the properties of the superconducting ordered state in FeSe.   

VIII. MODELING ORBITAL-SELECTIVE COOPER PAIRING IN FeSe 

Within a theoretical model for quasiparticles in a correlated material, one can parameterize 

the full Green’s function using a quasiparticle weight 𝑍𝒌  and a modified dispersion 𝐸̃𝒌  as 

𝐺(𝒌, 𝜔) = 𝑍𝒌/(𝜔 + 𝑖0+ − 𝐸̃𝒌). Considering our approach to determine the quasiparticle energies 

by a fit to experimental results from ARPES, QO and SI-STM data for the present material, the 

corrections to 𝐸̃𝒌 are already taken into account by the shifts and additional terms as outlined in 

section I. 



A calculation of the gap structure within a model that only takes into account the modified 

quasiparticle energies fails: From standard spin fluctuation theory one obtains a rather small gap 

on the α-pocket (even slightly smaller than in earlier 3D calculations (26)) with limited anisotropy 

and a large gap on the epsilon pocket, but with opposite anisotropy as shown in Fig. S18A. 

Furthermore, the spin-fluctuation spectrum is dominated by (𝜋, 𝜋) fluctuations rather than (𝜋, 0) 

fluctuations as observed in INS (27,28). Neither imposing strong (𝜋, 0) fluctuations 'by hand', nor 

using the slightly modified band structure of Ref. (26), which actually accounts well for the 

measured neutron measurements, resolves the discrepancy. We therefore postulate that the missing 

ingredient is strong orbital selectivity in the quasiparticle weights. 

From many-body methods (17,29), it is known that the 𝑑𝑥𝑦 orbital is strongly renormalized, 

i.e. the quasiparticle weight 𝑍𝒌 is suppressed. In the nematic state one additionally expects that the 

quasiparticle weight of the 𝑑𝑥𝑧  orbital is different from that of the 𝑑𝑦𝑧  orbital. Using this 

information, one can dress the Green’s function as derived from our tight-binding model with a 

simple multiplication of an orbital-dependent quasiparticle weight: 

𝐺𝑎𝑏(𝒌, 𝜔) = 𝑍𝑎𝑏𝐺𝑎𝑏
0 (𝒌, 𝜔) (𝑆6) 

where 𝑍𝑎𝑏 = √𝑍𝑎√𝑍𝑏  is given by the geometric mean of the quasiparticle weights of the 

connected orbitals in the spirit of renormalizing the electron operators 𝑐𝑎 → √𝑍𝑎𝑐𝑎.  

This approach modifies the pairing interaction in orbital space and thus also influences the 

superconducting gap found when solving the linearized gap equation (12,30) or the Bogoliubov 

de Gennes equation self-consistently (20,21). In a simple picture, it suppresses pair scattering from 

and to 𝑑𝑥𝑦 orbitals and 𝑑𝑥𝑧 orbitals, as they are less coherent. Within this approach, the resulting 

gap gets much more anisotropic because the only left over orbital channel (with significant orbital 

contribution close to the Fermi level) is 𝑑𝑦𝑧 . To illustrate the drastic changes upon orbital 

selectivity, we strongly suppress the weight of the 𝑑𝑥𝑦 orbital and moderately suppress the 𝑑𝑥𝑧 

orbital to calculate the spin susceptibility using Eq. (S6) instead of the bare Green function 

𝐺𝑎𝑏
0 (𝒌, 𝜔). Calculating the pairing interaction and solving the linearized gap equation (12,30) we 

obtain a gap function as shown in Fig S18B. Obviously, the trends in the anisotropy and the relative 

magnitudes of the gaps are drastically changed. At the same time, the susceptibility becomes more 



(𝜋, 0)  dominated, consistent with Refs. (27,28). Finally, we note that the electronic states 

themselves may show properties of decoherence according to the quasiparticle weights in band 

space. To demonstrate the implementation of this effect, we perform a pairing calculation where 

additionally pairing in the 𝑑𝑥𝑦 (𝑑𝑥𝑧) states is relatively suppressed according to the decoherence 

of these states described by the Z-factors. In this calculation, the decoherence enters via the 

susceptibility and as additional prefactors through the matrix elements when projecting the pairing 

interaction from orbital to band space, such that an almost perfect agreement between theoretical 

result and experiment is obtained, see Figs. S18C, S18D. 

IX. BAND STRUCTURE PARAMETERS 

Hoppings 𝑡𝒓−𝒓′
𝑎𝑏 , used for the calculations, are attached in a separate file in a machine readable 

form. The format is the following: 𝑟𝑥, 𝑟𝑦, 𝑟𝑧 , 𝑎, 𝑏, 𝑅𝑒(𝑡), 𝐼𝑚(𝑡) . The Hamiltonian as described 

above can be obtained by a Fourier transform of the following lines, e.g. the contribution of each 

line to the element 𝑎 row and 𝑏 column of the Hamiltonian 𝐻0 is given by 𝑒𝑥𝑝 (−𝑖(𝑟𝑥𝑘𝑥 + 𝑟𝑦𝑘𝑦 +

𝑟𝑧𝑘𝑧)) [𝑅𝑒(𝑡) + 𝑖𝐼𝑚(𝑡)]. Note that the basis of the orbitals has been chosen as in (10) yielding 

also complex hoppings. Note further that the orbital order term as well as the important 

contribution of the spin orbit coupling from 𝑆𝑧𝐿𝑧 is also included in these hoppings. 
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Figure S1 | FeSe crystal structure. The lattice parameters a = 5.31Å < b = 5.33Å < c = 5.48Å  

define the orthorhombic unit cell below the structural transition. In accordance with earlier work 

(Ref. 8,9) we introduce the non-standard parameters aFe > bFe for labeling throughout this paper. 

 

 

 

 

 

 

 

 

 

 



 

Figure S2 | Tight-binding model for FeSe. A Band structure used as a basis for theoretical 

calculations. Line thickness represents the magnitude of the dominant orbital content. Thus, if the 

line gets thinner orbital content will be more mixed. Red = 𝑑𝑥𝑧, green = 𝑑𝑦𝑧, blue = 𝑑𝑥𝑦, and black 

= 𝑑𝑥2−𝑦2or 𝑑𝑧2. B Fermi surface including orbital character of our band structure model at low 

temperatures. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Figure S3 | Upper left panel shows the Fermi surface at 𝑘𝑧 = 0 for our band structure model (also 

shown figure 1B of the main manuscript). In the remaining three panels, the individual 

contributions of the main d-orbitals are shown explicitly on the Fermi surface (greater line 

thickness corresponding to bigger contribution). 

 

 

 

 



 

Figure S4 | 10-band spectral function of the tight-binding model above and below the 

structural transition. A, Above the structural transition the orbital order terms are zero. As a 

consequence of this, both the hole-like pockets around Γ and the electron-like pockets around the 

M-point are C4-symmetric. B, Below the structural transition, the orbital order terms break the C4-

symmetry of both the hole-like pocket around Γ and the electron-like pockets around X. 

The solid white line marks the boundary of the 2Fe-unit cell Brillouin zone, and the dashed white 

lines represent symmetry axes about which the Fermi surface is mirror symmetric.  

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Figure S5 | Comparison between the Fermi surface of our model at 𝑘𝑧 = 0 (black lines) and 𝑘𝑧 =

𝜋 (blue lines) and experimentally deduced points of the Fermi surface from BQPI (red dots) and a 

map of the spectral function at 𝜔 = 0 and 𝑘𝑧 = 𝜋 as measured by APRES (14) (gray map). The 

features in the ARPES spectral function that generate an apparent C4-symmetry about both the -

point and about the X-point, are due to summation over the two types of nematic/orthorhombic 

domains that are orthogonal to each other, and are irrelevant for band structure parameterization.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Figure S6 | Different tunneling tips. A, C, E Differential tunneling conductance images 𝑔(𝑟, 𝐸) 

for three different tips at -1.1 meV. B, D, F Symmetrized, averaged, and core subtracted amplitude 

Fourier transforms |𝑔(𝑞⃗, 𝐸)|   of the conductance maps in A, C, E. The tip in A and B is 

simultaneously sensitive to both α- and ε-band BQPI. The tip in C and D is sensitive predominantly 

to the α pocket because it spatial resolution is low and so can only detect long wavelength BQPI. 

The tip in E and F instead mostly displays sensitivity to the ε-pocket. Cyan crosses mark 

(±
2𝜋

8𝑎𝐹𝑒
, ±

2𝜋

8𝑏𝐹𝑒
) positions. 

 



 

Figure S7 | Relationship between r- and q-space sensitivity of different tunneling tips. A, B 

Constant current topography in the same nematic domain in FeSe with two of the tips discussed in 

additional detail in the text and Fig. S6. The inset shows the topographic region marked by the 

black box. The ability to resolve atoms differs strongly between the two tips. C, D Amplitude of 

the Fourier transform of the topographs in A and B. The tip with superior spatial resolution detects 

scattering at high q-values, not observed in the Fourier transform of the lower spatial resolution 

tip. The white circle marks (+
𝜋

𝑎𝐹𝑒
, +

𝜋

𝑏𝐹𝑒
) . Cyan crosses mark (±

2𝜋

8𝑎𝐹𝑒
, ±

2𝜋

8𝑏𝐹𝑒
) positions. 

 



 

Figure S8 | BQPI data processing steps. A, Raw amplitude Fourier transform |𝑔(𝑞⃗, 𝐸)|  as 

obtained from the measured differential conductance shown in Fig. S6E. The dashed white lines 

represent mirror symmetry axes of the Brillouin zone, see also Fig. S4. B, Symmetrized amplitude 

Fourier transform |𝑔(𝑞⃗, 𝐸)| created by reflection about the mirror symmetry axes displayed in A. 

C, Symmetrized and averaged amplitude Fourier transform |𝑔(𝑞⃗, 𝐸)| ; after symmetrization a 

three-by-three pixel averaging filter is utilized in order to further increase signal-to-noise. D, 

Symmetrized, averaged and core subtracted amplitude Fourier transform |𝑔(𝑞⃗, 𝐸)|; in the last step 

a Gaussian core is subtracted in Fourier space which corresponds to a long wavelength filter in 

real space. In all panels cyan crosses mark (±
2𝜋

8𝑎𝐹𝑒
, ±

2𝜋

8𝑏𝐹𝑒
) positions. 

 



 

Figure S9 | Partial Joint Density of States (JDOS) using the tight-binding model and orbital 

selective pairing for the α-pocket, the ε-pocket and the sum of both the α- and ε-pocket. Cyan 

crosses mark (±
2𝜋

8𝑎𝐹𝑒
, ±

2𝜋

8𝑏𝐹𝑒
) positions. 

 

 

 

 

 

 

 

 

 

 

 

 



 



Figure S10 | Comparison of |𝒈(𝒒, 𝑬)| and partial JDOS for an 𝜶-tip configuration. A - D, 

Symmetrized, averaged, and core subtracted amplitude Fourier transforms |𝑔(𝑞⃗, 𝐸)|  at four 

energies inside the superconducting gap Δ𝛼. Black crosses mark the extracted q-vectors expected 

from the ‘banana’ tips model.  E-H, Partial JDOS for α-pocket at corresponding energies.  

Cyan crosses mark (±
2𝜋

8𝑎𝐹𝑒
, ±

2𝜋

8𝑏𝐹𝑒
) positions. 



 



Figure S11 | Comparison of |𝒈(𝒒, 𝑬)| and partial JDOS for an 𝜺-tip configuration. A - D, 

Symmetrized, averaged, and core subtracted amplitude Fourier transforms |𝑔(𝑞⃗, 𝐸)|  at four 

energies inside the superconducting gap Δ𝜀. Black crosses mark the extracted q-vectors expected 

from the ‘banana’ tips model.  E-H, Partial JDOS for ε-pocket at corresponding energies.  

Cyan crosses mark (±
2𝜋

8𝑎𝐹𝑒
, ±

2𝜋

8𝑏𝐹𝑒
) positions. 

 

 

 

 

 

 

 

 

 



 

Figure S12 | A Schematic showing a superconducting CEC at a particular energy 𝜖′ > 0 (above 

the chemical potential) for an ellipsoidal hole pocket (grey dashed line) with two-fold symmetric 

anisotropic gap that is maximum along the 𝑘𝑥 directions and minimum along the 𝑘𝑦 direction. B 

Spectral function 𝐴(𝒌, 𝜔 = 𝜖′) corresponding to A. The spectral weight is greatest at the locations 

of ‘banana’ tips. 

 

  



 

Figure S13 | A Measured evolution of |𝑞⃗𝑖
α(𝐸)| for 2.3meV>|E|>0.8meV at 280mK. Dashed lines 

symbolize the expected energy dependence of |𝑞⃗𝑖
α(𝐸)| in a ‘banana tips’ model for empirically 

determined Fermi surface and Δα(𝑘⃗⃗). B Measured evolution of |𝑞⃗𝑖
ε(𝐸)| for 1.3meV>|E|>0.3meV 

at 280mK. Dashed lines symbolize the expected energy dependence of |𝑞⃗𝑖
ε(𝐸)| in a ‘banana tips’ 

model for empirically determined Fermi surface and 𝛥𝜀(𝑘⃗⃗). 

 

 

 

 

 



 

Figure S14 | Experimentally extracted 𝝆−(𝜔). A Constant current topography of a single defect 

in FeSe. B Constant current topography of the same defect as in A, but the data has both been LF-

corrected and shifted so that the center of the defect is at the origin of the FT. C 

𝑅𝑒{𝜌−(𝑞⃗, 𝜔 = 1.05 𝑚𝑒𝑉)} of the raw data. D 𝑅𝑒{𝜌−(𝑞⃗, 𝜔 = 1.05 𝑚𝑒𝑉)} of the LF- and shift-

corrected data. E Comparison of 𝜌−(𝜔) for both the raw and LF- and shift-corrected data. F 

Comparison of 𝜌−(𝜔) for three differently sized integration areas in 𝑞⃗-space. The vertical dashed 

black line marks the energy of the maximum superconducting gap in E and F. 



 

Figure S15 | 𝝆−(𝝎) for three different impurities. A Constant current topography of a single 

domain in FeSe. The black and blue square mark the positions of the topograph presented in B and 

C, respectively. B Constant current topography of a single defect, referred to as impurity 1 in E 

and F. C Constant current topography of a several defects. The blue circle marks impurity 2. D 

Constant current topography of several defects near a twin boundary in a second sample of FeSe 

studied by SI-STM. The red circle marks impurity 3.  E Comparison of 𝜌−(𝜔) for impurities 1 and 

2 of the same sample with theoretically predicted 𝜌−(𝜔). F Comparison of 𝜌−(𝜔) for impurities 

1 and 3 of two different FeSe samples with theoretically predicted 𝜌−(𝜔). The vertical dashed 

black line marks the energy of the maximum superconducting gap in E and F. 



Figure S16 |In-gap states induced by impurity. dI/dV line-cuts through the single impurity site 

along the x- and y-direction where x is parallel to aFe and y is parallel to bFe. While small, an 

increase of the dI/dV is clearly visible inside the superconducting gap at the location of the 

impurity (corresponding to 0 nm in the dI/dV panels) that is indicative of a weak in-gap impurity-

state.    



 

Figure S17 | Disappearance of 𝜌−(𝑞⃗, 𝜔)-signal above TC. A, B, Differential conductance image at 

25 meV of the same impurity at 4.2 K and 10.0 K. C, D, 𝑅𝑒{𝜌−(𝑞⃗, 𝜔 = 1 𝑚𝑒𝑉) for the defect 

shown in A and B. The signal corresponding to scattering between the α- and ε-pocket vanishes 

above TC. E, Average spectrum for the field of view shown in A, B recorded for the same setup 

voltage and current. Above TC no sign of the superconducting gap remains.  



 



Figure S18 | Results from calculations of the gap-symmetry function (12,30). A, traditional 

spin-fluctuation theory of the present model, yielding a very small gap on the 𝛼 pocket and a large 

anisotropic gap on the 𝜀 (and 𝛿 pocket; not shown). Comparing to the experimental result [panel 

D] shows a strong discrepancy qualitatively and quantitatively. B, spin fluctuation pairing using a 

susceptibility calculated with modified quasiparticle weights 𝑍𝛼, Eq. (S6), yields a gap function 

that has some similarities to the measured order parameter from BQPI, whereas a nodal feature on 

the ε band together with the sign-change disagrees with experimental findings. C, additionally 

imposing orbital selectivity in the pairing itself, e.g. suppressing pairing in the 𝑑𝑥𝑦 channel and in 

the 𝑑𝑥𝑧  channel according to their respective decoherence as described by the Z-factors when 

projecting the pairing interaction to momentum space, yields almost perfect agreement due to the 

dominant 𝑑𝑦𝑧  pairing. D, superconducting gap deduced experimentally from BQPI. The gap 

symmetry functions in all models (A-C) were scaled to have the same maximum gap value that 

would agree with the main coherence peaks observed in dI/dV spectra. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Movie S1 

Movie contains three panels showing measured and simulated BQPI for the α-pocket. From left 

to right the content is as follows: 𝑔(𝑟, 𝐸); symmetrized, averaged, and core subtracted |𝑔(𝑞⃗, 𝐸)| 
where the black crosses mark the position of 𝑞⃗𝑖

α(𝐸) i=1-3 and blue crosses mark the 

(±
2𝜋

8𝑎𝐹𝑒
, ±

2𝜋

8𝑏𝐹𝑒
)  positions; partial 𝐽𝐷𝑂𝑆(𝑞⃗, 𝐸) for the α-pocket where the blue crosses mark the 

(±
2𝜋

8𝑎𝐹𝑒
, ±

2𝜋

8𝑏𝐹𝑒
)  positions. 

 

Movie S2 

Movie contains three panels showing measured and simulated BQPI for the ε-pocket. From left 

to right the content is as follows: 𝑔(𝑟, 𝐸); symmetrized, averaged, and core subtracted |𝑔(𝑞⃗, 𝐸)| 
where the black crosses mark the position of 𝑞⃗𝑖

ε(𝐸) i=1-3 and blue crosses mark the 

(±
2𝜋

8𝑎𝐹𝑒
, ±

2𝜋

8𝑏𝐹𝑒
) positions; partial 𝐽𝐷𝑂𝑆(𝑞⃗, 𝐸) for the ε-pocket where the blue crosses mark the 

(±
2𝜋

8𝑎𝐹𝑒
, ±

2𝜋

8𝑏𝐹𝑒
) positions. 

 

Movie S3 

𝜌−(𝐸) and 𝜌−(𝑞⃗, 𝐸) for single, isolated impurity in FeSe. The black circle surrounds the area in 

𝑞⃗-space for interband scattering 𝑝⃗1 between the α- and ε-pocket. 

 

Additional Data table S1 (separate file) 

Hoppings 𝑡𝒓−𝒓′
𝑎𝑏  of the tight-binding model used for the calculations, are attached in a separate file 

in a machine readable form. The name of the file is ‘tb_FeSe_parameters.csv’. Columns in the 

file are arranged as follows: 𝑟𝑥, 𝑟𝑦, 𝑟𝑧 , 𝑎, 𝑏, 𝑅𝑒(𝑡), 𝐼𝑚(𝑡). For more information, see section IX of 

the supplementary text. 

 


