11 research outputs found

    Pseudoachondroplasia and Multiple Epiphyseal Dysplasia: A 7-Year Comprehensive Analysis of the Known Disease Genes Identify Novel and Recurrent Mutations and Provides an Accurate Assessment of Their Relative Contribution

    Get PDF
    Pseudoachondroplasia (PSACH) and multiple epiphyseal dysplasia (MED) are relatively common skeletal dysplasias resulting in short-limbed dwarfism, joint pain, and stiffness. PSACH and the largest proportion of autosomal dominant MED (AD-MED) results from mutations in cartilage oligomeric matrix protein (COMP); however, AD-MED is genetically heterogenous and can also result from mutations in matrilin-3 (MATN3) and type IX collagen (COL9A1, COL9A2, and COL9A3). In contrast, autosomal recessive MED (rMED) appears to result exclusively from mutations in sulphate transporter solute carrier family 26 (SLC26A2). The diagnosis of PSACH and MED can be difficult for the nonexpert due to various complications and similarities with other related diseases and often mutation analysis is requested to either confirm or exclude the diagnosis. Since 2003, the European Skeletal Dysplasia Network (ESDN) has used an on-line review system to efficiently diagnose cases referred to the network prior to mutation analysis. In this study, we present the molecular findings in 130 patients referred to ESDN, which includes the identification of novel and recurrent mutations in over 100 patients. Furthermore, this study provides the first indication of the relative contribution of each gene and confirms that they account for the majority of PSACH and MED. Hum Mutat 33:144–157, 2012. © 2011 Wiley Periodicals, Inc

    Dominant negative mutations in the C-propeptide of COL2A1 cause platyspondylic lethal skeletal dysplasia, torrance type, and define a novel subfamily within the type 2 collagenopathies

    No full text
    Platyspondylic lethal skeletal dysplasia (PLSD) Torrance type (PLSD-T) is a rare skeletal dysplasia characterized by platyspondyly, brachydactyly, and metaphyseal changes. Generally a perinatally lethal disease, a few long-term survivors have been reported. Recently, mutations in the carboxy-propeptide of type II collagen have been identified in two patients with PLSD-T, indicating that PLSD-T is a type 2 collagen-associated disorder. We studied eight additional cases of PLSD-T and found that all had mutations in the C-propeptide domain of COL2A1. The mutational spectrum includes missense, stop codon and frameshift mutations. All non-sense mutations were located in the last exon, where they would escape non-sense-mediated RNA-decay. We conclude that PLSD-T is caused by mutations in the C-propeptide domain of COL2A1, which lead to biosynthesis of an altered collagen chain (as opposed to a null allele). Similar mutations have recently been found to be the cause of spondyloperipheral dysplasia, a non-lethal dominant disorder whose clinical and radiographical features overlap those of the rare long-term survivors with PLSD-T. Thus, spondyloperipheral dysplasia and PLSD-T constitute a novel subfamily within the type II collagenopathies, associated with specific mutations in the C-propeptide domain and characterized by distinctive radiological features including metaphyseal changes and brachydactyly that set them apart from other type 2 collagenopathies associated with mutations in the triple-helical domain of COL2A1. The specific phenotype of C-propeptide mutations could result from a combination of diminished collagen fibril formation, toxic effects through the accumulation of unfolded collagen chains inside the chondrocytes, and alteration of a putative signaling function of the carboxy-propeptide of type 2 collagen. © 2005 Wiley-Liss, Inc

    Schimke immunoosseous dysplasia: defining skeletal features

    No full text
    Schimke immunoosseous dysplasia (SIOD) is an autosomal recessive multisystem disorder characterized by prominent spondyloepiphyseal dysplasia, T cell deficiency, and focal segmental glomerulosclerosis. Biallelic mutations in swi/snf-related, matrix-associated, actin-dependent regulator of chromatin, subfamily a-like 1 (SMARCAL1) are the only identified cause of SIOD, but approximately half of patients referred for molecular studies do not have detectable mutations in SMARCAL1. We hypothesized that skeletal features distinguish between those with or without SMARCAL1 mutations. Therefore, we analyzed the skeletal radiographs of 22 patients with and 11 without detectable SMARCAL1 mutations. We found that patients with SMARCAL1 mutations have a spondyloepiphyseal dysplasia (SED) essentially limited to the spine, pelvis, capital femoral epiphyses, and possibly the sella turcica, whereas the hands and other long bones are basically normal. Additionally, we found that several of the adolescent and young adult patients developed osteoporosis and coxarthrosis. Of the 11 patients without detectable SMARCAL1 mutations, seven had a SED indistinguishable from patients with SMARCAL1 mutations. We conclude therefore that SED is a feature of patients with SMARCAL1 mutations and that skeletal features do not distinguish who of those with SED have SMARCAL1 mutations

    Use of biologics in allergic and type 2 inflammatory diseases in the current Covid 19 pandemic

    No full text
    Klimek L, Pfaar O, Worm M, et al. Anwendung von Biologika bei allergischen und Typ-2-entzündlichen Erkrankungen in der aktuellen Covid-19-Pandemie. Allergo Journal . 2020;29(4):14-27

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016): part one

    No full text
    corecore