13 research outputs found

    Influence of volcanic eruptions on midlatitude upper tropospheric aerosol and consequences for cirrus clouds – Volc Affects S Aerosol in UT and Cirrus

    Get PDF
    The influence of downwelling stratospheric sulfurous aerosol on the UT (upper troposphere) aerosol concentrations and on cirrus clouds is investigated using CARIBIC (Civil Aircraft for Regular Investigation of the Atmosphere Based on an Instrument Container observations) (between 1999–2002 and 2005–2013) and the cirrus reflectance product from Moderate Resolution Imaging Spectroradiometer (MODIS). The initial period, 1999–2002, was volcanically quiescent after which the sulfurous aerosol in the LMS (lowermost stratosphere) (SLMS_{LMS}) became enhanced by several volcanic eruptions starting 2005. From 2005 to 2008 and in 2013, volcanic aerosol from several tropical eruptions increased SLMS_{LMS}. Due to consequent subsidence, the sulfur loading of the upper troposphere (SUT_{UT}) was increased by a factor of 2.5 compared to background levels. Comparison of SLMS and SUT_{UT} during the seasons March–July and August–November shows a close coupling of the UT and LMS. Finally, the relationship between SLMS_{LMS} and the cirrus cloud reflectance (CR) retrieved from MODIS spectrometer (on board the satellites Terra and Aqua) is studied. SLMS_{LMS} and CR show a strong anticorrelation, with a factor of 3.5 increase in SLMS and decrease of CR by 8 ± 2% over the period 2001–2011. We propose that the increase of SLMS_{LMS} due to volcanism has caused the coinciding cirrus CR decrease, which would be associated with a negative radiative forcing in the Northern Hemisphere midlatitudes

    Peri-operative red blood cell transfusion in neonates and infants: NEonate and Children audiT of Anaesthesia pRactice IN Europe: A prospective European multicentre observational study

    Get PDF
    BACKGROUND: Little is known about current clinical practice concerning peri-operative red blood cell transfusion in neonates and small infants. Guidelines suggest transfusions based on haemoglobin thresholds ranging from 8.5 to 12 g dl-1, distinguishing between children from birth to day 7 (week 1), from day 8 to day 14 (week 2) or from day 15 (≄week 3) onwards. OBJECTIVE: To observe peri-operative red blood cell transfusion practice according to guidelines in relation to patient outcome. DESIGN: A multicentre observational study. SETTING: The NEonate-Children sTudy of Anaesthesia pRactice IN Europe (NECTARINE) trial recruited patients up to 60 weeks' postmenstrual age undergoing anaesthesia for surgical or diagnostic procedures from 165 centres in 31 European countries between March 2016 and January 2017. PATIENTS: The data included 5609 patients undergoing 6542 procedures. Inclusion criteria was a peri-operative red blood cell transfusion. MAIN OUTCOME MEASURES: The primary endpoint was the haemoglobin level triggering a transfusion for neonates in week 1, week 2 and week 3. Secondary endpoints were transfusion volumes, 'delta haemoglobin' (preprocedure - transfusion-triggering) and 30-day and 90-day morbidity and mortality. RESULTS: Peri-operative red blood cell transfusions were recorded during 447 procedures (6.9%). The median haemoglobin levels triggering a transfusion were 9.6 [IQR 8.7 to 10.9] g dl-1 for neonates in week 1, 9.6 [7.7 to 10.4] g dl-1 in week 2 and 8.0 [7.3 to 9.0] g dl-1 in week 3. The median transfusion volume was 17.1 [11.1 to 26.4] ml kg-1 with a median delta haemoglobin of 1.8 [0.0 to 3.6] g dl-1. Thirty-day morbidity was 47.8% with an overall mortality of 11.3%. CONCLUSIONS: Results indicate lower transfusion-triggering haemoglobin thresholds in clinical practice than suggested by current guidelines. The high morbidity and mortality of this NECTARINE sub-cohort calls for investigative action and evidence-based guidelines addressing peri-operative red blood cell transfusions strategies. TRIAL REGISTRATION: ClinicalTrials.gov, identifier: NCT02350348

    3D dataset from "Methodology to obtain highly resolved SO2 vertical profiles for representation of volcanic emissions in climate models"

    No full text
    This dataset has been produced according to the method described in the paper "Methodology to obtain highly resolved SO2 vertical profiles for representation of volcanic emissions in climate models". This is a 3D global dataset of the concentrations of sulfurdioxide in the stratosphere after the volcanic eruption from Sarychev the 11-21 of June 2009. Data of SO2 concentrations in the stratosphere after the Sarychev 2009 eruption. The data has been put together from the satellite instruments CALIOP and AIRS with the aid of FLEXPART. The data can be used in models as emissions of SO2 from the 2009 Sarychev eruption.Detta dataset har producerats utifrÄn metoden beskriven i artikeln "Methodology to obtain highly resolved SO2 vertical profiles for representation of volcanic emissions in climate models". Datat Àr ett globalt 3D dataset över koncentrationer av svaveldioxid i stratosfÀren efter vulkanutbrottet frÄn Sarychev den 11-21 juni 2009. Data över SO2 koncentrationer i stratosfÀren efter vulkanutbrottet frÄn Sarychev 2009. Datat har tagits fram utifrÄn data frÄn satellit instrumenten CALIOP och AIRS med hjÀlp av FLEXPART. Datat kan anvÀndas i modeller som utslÀpp av SO2 frÄn Sarychev utbrottet

    Randomized controlled trial of low vs high oxygen during neonatal anesthesia : Oxygenation, feasibility, and oxidative stress

    No full text
    Background To reduce risk for intermittent hypoxia a high fraction of inspired oxygen is routinely used during anesthesia induction. This differs from the cautious dosing of oxygen during neonatal resuscitation and intensive care and may result in significant hyperoxia. Aim In a randomized controlled trial, we evaluated oxygenation during general anesthesia with a low (23%) vs a high (80% during induction and recovery, and 40% during maintenance) fraction of inspired oxygen, in newborn infants undergoing surgery. Method Thirty-five newborn infants with postconceptional age of 35-44 weeks were included (17 infants in low and 18 in high oxygen group). Oxygenation was monitored by transcutaneous partial pressure of oxygen, pulse oximetry, and cerebral oxygenation. Predefined SpO2 safety targets dictated when to increase inspired oxygen. Results At start of anesthesia, oxygenation was similar in both groups. Throughout anesthesia, the high oxygen group displayed significant hyperoxia with higher (difference-20.3 kPa, 95% confidence interval (CI)-28.4 to 12.2, p < .001) transcutaneous partial pressure of oxygen values than the low oxygen group. While SpO2 in the low oxygen group was lower (difference - 5.8%, 95% CI -9.3 to -2.4, p < .001) during anesthesia, none of the infants spent enough time below SpO(2) safety targets to mandate supplemental oxygen, and cerebral oxygenation was within the normal range and not statistically different between the groups. Analysis of the oxidative stress biomarker urinary F-2-Isoprostane revealed no differences between the low and high oxygen group. Conclusion We conclude that in healthy newborn infants, use of low oxygen during general anesthesia was feasible, while the prevailing practice of using high levels of inspired oxygen resulted in significant hyperoxia. The trade-off between careful dosing of oxygen and risks of hypo- and hyperoxia in neonatal anesthesia should be further examined

    Five-satellite-sensor study of the rapid decline of wildfire smoke in the stratosphere

    No full text
    Smoke from western North American wildfires reached the stratosphere in large amounts in August 2017. Limb-oriented satellite-based sensors are commonly used for studies of wildfire aerosol injected into the stratosphere (OMPS-LP (Ozone Mapping and Profiler Suite Limb Profiler) and SAGE III/ISS (Stratospheric Aerosol and Gas Experiment III on the International Space Station)). We find that these methods are inadequate for studies of the first 1-2 months after such a strong fire event due to event termination ("saturation"). The nadir-viewing lidar CALIOP (Cloud-Aerosol LIdar with Orthogonal Polarization) is less affected due to shorter path in the smoke; furthermore, it provides a means to develop a method to correct for strong attenuation of the signal. After the initial phase, the aerosol optical depth (AOD) from OMPS-LP and CALIOP show very good agreement above the 380ĝK isentrope, whereas OMPS-LP tends to produce higher AOD than CALIOP in the lowermost stratosphere (LMS), probably due to reduced sensitivity at altitudes below 17ĝkm. Time series from CALIOP of attenuation-corrected stratospheric AOD of wildfire smoke show an exponential decline during the first month after the fire, which coincides with highly significant changes in the wildfire aerosol optical properties. The AOD decline is verified by the evolution of the smoke layer composition, comparing the aerosol scattering ratio (CALIOP) to the water vapor concentration from MLS (Microwave Limb Sounder). Initially the stratospheric wildfire smoke AOD is comparable with the most important volcanic eruptions during the last 25 years. Wildfire aerosol declines much faster, 80ĝ%-90ĝ% of the AOD is removed with a half-life of approximately 10ĝd. We hypothesize that this dramatic decline is caused by photolytic loss. This process is rarely observed in the atmosphere. However, in the stratosphere this process can be studied with practically no influence from wet deposition, in contrast to the troposphere where this is the main removal path of submicron aerosol particles. Despite the loss, the aerosol particles from wildfire smoke in the stratosphere are relevant for the climate

    Methodology to obtain highly resolved SO2 vertical profiles for representation of volcanic emissions in climate models

    No full text
    In this study we describe a methodology to create high-vertical-resolution SO2 profiles from volcanic emissions. We demonstrate the method's performance for the volcanic clouds following the eruption of Sarychev in June 2009. The resulting profiles are based on a combination of satellite SO2 and aerosol retrievals together with trajectory modelling. We use satellite-based measurements, namely lidar backscattering profiles from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) satellite instrument, to create vertical profiles for SO2 swaths from the Atmospheric Infrared Sounder (AIRS) aboard the Aqua satellite. Vertical profiles are created by transporting the air containing volcanic aerosol seen in CALIOP observations using the FLEXible PARTicle dispersion model (FLEXPART) while preserving the high vertical resolution using the potential temperatures from the MERRA-2 (Modern-Era Retrospective analysis for Research and Application) meteorological data for the original CALIOP swaths. For the Sarychev eruption, air tracers from 75 CALIOP swaths within 9g d after the eruption are transported forwards and backwards and then combined at a point in time when AIRS swaths cover the complete volcanic SO2 cloud. Our method creates vertical distributions for column density observations of SO2 for individual AIRS swaths, using height information from multiple CALIOP swaths. The resulting dataset gives insight into the height distribution in the different sub-clouds of SO2 within the stratosphere. We have compiled a gridded high-vertical-resolution SO2 inventory that can be used in Earth system models, with a vertical resolution of 1g K in potential temperature, 61g g 56g m, or 1.8g g 2.9g mbar

    Influence of volcanic eruptions on midlatitude upper tropospheric aerosol and consequences for cirrus clouds

    Get PDF
    The influence of downwelling stratospheric sulfurous aerosol on the UT (upper troposphere) aerosol concentrations and on cirrus clouds is investigated using CARIBIC (Civil Aircraft for Regular Investigation of the Atmosphere Based on an Instrument Container observations) (between 1999–2002 and 2005–2013) and the cirrus reflectance product from Moderate Resolution Imaging Spectroradiometer (MODIS). The initial period, 1999–2002, was volcanically quiescent after which the sulfurous aerosol in the LMS (lowermost stratosphere) (SLMS) became enhanced by several volcanic eruptions starting 2005. From 2005 to 2008 and in 2013, volcanic aerosol from several tropical eruptions increased SLMS. Due to consequent subsidence, the sulfur loading of the upper troposphere (SUT) was increased by a factor of 2.5 compared to background levels. Comparison of SLMS and SUT during the seasons March–July and August–November shows a close coupling of the UT and LMS. Finally, the relationship between SLMS and the cirrus cloud reflectance (CR) retrieved from MODIS spectrometer (on board the satellites Terra and Aqua) is studied. SLMS and CR show a strong anticorrelation, with a factor of 3.5 increase in SLMS and decrease of CR by 8 ± 2% over the period 2001–2011. We propose that the increase of SLMS due to volcanism has caused the coinciding cirrus CR decrease, which would be associated with a negative radiative forcing in the Northern Hemisphere midlatitudes

    Transcutaneous Pco(2) Monitoring in. Newborn Infants During General Anesthesia Is Technically Feasible

    No full text
    BACKGROUND: Transcutaneous (TC) measurement of Pco(2) (TC Pco(2)) is a well-established method to monitor assisted ventilation in neonatal intensive care, but its use in the operating room is limited, and the data regarding its performance during general anesthesia of the newborn are lacking. The aim of this study is to evaluate the performance of continuous TC Pco(2) monitoring during general anesthesia in newborn infants. METHODS: Infants (n = 25) with a gestational age of 23 to 41 weeks and a birth weight of 548 to 4114 g were prospectively enrolled. During general anesthesia and surgery, TC Pco(2) was measured continuously and recorded at 1-minute intervals. Five-minute mean values were compared with simultaneously obtained blood gas (BG) analyses of Pco(2). Only the first paired TC and BG samples were used in this analysis. We defined precision as 2.1 times the standard deviation of the difference of the 2 samples. P < .01 was considered statistically significant. RESULTS: We obtained samples from 25 infants. The difference between TC and BG was 0.3 +/- 0.7 kPa (mean +/- standard deviation) giving a precision of 1.47 kPa. Nineteen of twenty-five (76%) sample pairs displayed a difference of <1 kPa (99% confidence interval, 48%-92%, P = .016). The difference in paired samples was similar for different gestational and postnatal ages and did not appear to be affected by electrocautery. CONCLUSIONS: In this small study, we did not demonstrate that TC CO2 monitoring was accurate at P < .01. This partly reflects the small size of the study, resulting in wide 99% confidence bounds
    corecore