84 research outputs found

    Developing Sustainable Livestock Systems through Participatory Farmer Research

    Get PDF
    Application Understanding muscular adaptations could inform objective lameness-detection for early diagnosis/treatment, ultimately serving to detect sub-clinical issues in supposed healthy horses and to reduce pain/ incapacity in lame horses. Introduction The prevalence and impact of lameness on equine welfare has led to extensive research, which has biomechanically analysed lameness-related alterations in movement. Despite this, limited information is available about adaptive muscle activity that facilitates movement during lameness. Surface electromyography (sEMG) is a non-invasive method for quantifying muscle activity. However, no equine studies have employed sEMG to compare inherent and adaptive activity during non-lame and standardised lameness conditions, respectively. The aim of this preliminary study was to compare Triceps Brachii (TB) muscle activity in horses before and after induced forelimb (FL) lameness, using sEMG data. Material and methods Six clinically non-lame horses (5 mares, 1 stallion, age: 7.0±3.7 years, height: 162.3±4.0 cm, body mass: 572.7±45.8 kg) were used. sEMG sensors (Delsys Trigno, Delsys Inc.) were attached bilaterally to locations above TB (long head), that were prepared by removing all hair and cleaning with isopropyl alcohol. Retro-reflective markers were attached to anatomical landmarks for quantitative lameness evaluation (QHorse, Qualisys AB) and gait event detection. sEMG (2000 Hz) and 3D kinematic (200 Hz) data were synchronously collected from horses during in-hand trot trials, conducted on a straight, hard surfaced runway before (baseline) and after FL lameness induction. Baseline data were initially collected, then temporary, mild FL lameness (2-3/5 AAEP Lameness Scale) was induced using mechanical bolt pressure, applied to the tip of the frog and monitored by qualified veterinarians (T.S., F.S.B.) using a modified horseshoe (Merkens and Schamhardt, 1988). Left and right FL lameness induction were randomised. Following data collection, the bolt/ sole pressure was removed and no horses showed adverse reactions to lameness inductions, or residual lameness. For stride segmentation, gait events were detected using kinematic data that were low-pass filtered (Butterworth 4th order, 10 Hz cut-off) and analysed in accordance with the methods described by Holt et al. (2017). To quantify lameness, MinDiff was calculated using poll vertical displacement data, where healthy horses exhibit MinDiff between -6 – 6mm and left and right FL lameness are exhibited as more positive and negative values, respectively (Rhodin et al., 2016). Raw sEMG signals were DC-offset removed, high-pass filtered (Butterworth 4th order, 40 Hz cut-off) (St. George et al., 2018), and fullwave rectified. Integrated EMG (iEMG) and average rectified value (ARV) were calculated using stride duration as temporal domain. To reduce inter-subject variability, iEMG and ARV from each horse were normalised to the maximum value observed for each limb (left/ right FL) across all strides from the baseline condition. Data from the “lame” and “nonlame” limb were grouped, according to the limb where lameness was induced. A 2x2 repeated measures ANOVA was used to compare muscle activity between limb (lame, non-lame) and condition (baseline, induced FL lameness). Post-hoc analyses using Bonferroni correction were performed where significant main effects were found. Results Mean ± sd MinDiff were baseline:-1.8 ± 8.7 mm, left FL lameness induction:-55.3 ± 34.1 mm, right FL lameness: 56.8 ± 17.9 mm. Significant interactions between limb and condition were found for iEMG (p < 0.05, n2=0.74) and ARV (p < 0.05, n2=0.75). Post hoc analyses of iEMG and ARV data revealed muscle activity was significantly higher in the lame limb (p < 0.05) and significantly lower in the non-lame limb (p < 0.01) during the induced FL lameness condition. Conclusion Preliminary findings reveal neuromuscular adaptations in TB during induced FL lameness. Significant increases in stance duration have been reported during FL lameness (Weishaupt et al., 2006). Therefore, significant increases in lame limb muscle activity may be due to prolonged stabilisation of the shoulder and elbow joints, as a compensatory mechanism of gait adaptation to lameness. Further investigations of additional muscles and chronic lameness cases are required to determine whether sEMG can provide a complimentary tool for objective lameness detection

    Reliability of surface electromyographic (sEMG) measures of equine axial and appendicular muscles during overground trot

    Get PDF
    The reliability of surface electromyography (sEMG) has not been adequately demonstrated in the equine literature and is an essential consideration as a methodology for application in clinical gait analysis. This observational study investigated within-session, intra-subject (stride-to-stride) and inter-subject reliability, and between-session reliability of normalised sEMG activity profiles, from triceps brachii (triceps), latissimus dorsi (latissimus), longissimus dorsi (longissimus), biceps femoris (biceps), superficial gluteal (gluteal) and semitendinosus muscles in n = 8 clinically non-lame horses during in-hand trot. sEMG sensors were bilaterally located on muscles to collect data during two test sessions (session 1 and 2) with a minimum 24-hour interval. Raw sEMG signals from ten trot strides per horse and session were DC-offset removed, high-pass filtered (40 Hz), full-wave rectified, and low-pass filtered (25 Hz). Signals were normalised to peak amplitude and percent stride before calculating intra- and inter-subject ensemble average sEMG profiles across strides for each muscle and session. sEMG profiles were assessed using waveform similarity statistics: the coefficient of variation (CV) to assess intra- and inter-subject reliability and the adjusted coefficient of multiple correlation (CMC) to evaluate between-session reliability. Across muscles, CV data revealed that intra-horse sEMG profiles within- and between-sessions were comparatively more reliable than inter-horse profiles. Bilateral gluteal, semitendinosus, triceps and longissimus (at T14 and L1) and right biceps showed excellent between-session reliability with group-averaged CMCs > 0.90 (range 0.90–0.97). Bilateral latissimus and left biceps showed good between-session reliability with group-averaged CMCs > 0.75 (range 0.78–0.88). sEMG profiles can reliably describe fundamental muscle activity patterns for selected equine muscles within a test session for individual horses (intra-subject). However, these profiles are more variable across horses (inter-subject) and between sessions (between-session reliability), suggesting that it is reasonable to use sEMG to objectively monitor the intra-individual activity of these muscles across multiple gait evaluation sessions at in-hand trot

    Adaptations in equine axial movement and muscle activity occur during induced fore- and hindlimb lameness: a kinematic and electromyographic evaluation during in-hand trot

    Get PDF
    Background: The inter-relationship between equine thoracolumbar motion and muscle activation during normal locomotion and lameness is poorly understood. Objective: To compare thoracolumbar and pelvic kinematics and longissimus dorsi (longissimus) activity of trotting horses between baseline and induced forelimb (iFL) and hindlimb (iHL) lameness. Study design: Controlled experimental cross-over study. Methods: Three-dimensional kinematic data from the thoracolumbar vertebrae and pelvis, and bilateral surface electromyography (sEMG) data from longissimus at T14 and L1, were collected synchronously from clinically nonlame horses (n = 8) trotting overground during a baseline evaluation, and during iFL and iHL conditions (2–3/5 AAEP), induced on separate days using a lameness model (modified horseshoe). Motion asymmetry parameters, maximal thoracolumbar flexion/extension and lateral bending angles, and pelvis range of motion (ROM) were calculated from kinematic data. Normalised average rectified value (ARV) and muscle activation onset, offset and activity duration were calculated from sEMG signals. Mixed model analysis and statistical parametric mapping compared discrete and continuous variables between conditions (α = 0.05). Results: Asymmetry parameters reflected the degree of iFL and iHL. Maximal thoracolumbar flexion and pelvis pitch ROM increased significantly following iFL and iHL. During iHL, peak lateral bending increased towards the nonlame side (NLS) and decreased towards the lame side (LS). Longissimus ARV significantly increased bilaterally at T14 and L1 for iHL, but only at LS L1 for iFL. Longissimus activation was significantly delayed on the NLS and precipitated on the LS during iHL, but these clear phasic shifts were not observed in iFL. Main limitations: Findings should be confirmed in clinical cases. Conclusions: Distinctive, significant adaptations in thoracolumbar and pelvic motion and underlying longissimus activity occur during iFL and iHL and are detectable using combined motion capture and sEMG. For iFL, these adaptations occur primarily in a cranio-caudal direction, whereas for iHL, lateral bending and axial rotation are also involved

    Classification performance of sEMG and kinematic parameters for distinguishing between non-lame and induced lameness conditions in horses

    Get PDF
    Despite its proven research applications, it remains unknown whether surface electromyography (sEMG) can be used clinically to discriminate non-lame from lame conditions in horses. This study compared the classification performance of sEMG absolute value (sEMGabs) and asymmetry (sEMGasym) parameters, alongside validated kinematic upper-body asymmetry parameters, for distinguishing non-lame from induced fore- (iFL) and hindlimb (iHL) lameness. Bilateral sEMG and 3D-kinematic data were collected from clinically non-lame horses (n=8) during in-hand trot. iFL and iHL (2-3/5 AAEP) were induced on separate days using a modified horseshoe, with baseline data initially collected each day. sEMG signals were DC-offset removed, high-pass filtered (40Hz), and full-wave rectified. Normalized, average rectified value (ARV) was calculated for each muscle and stride (sEMGabs), with the difference between right and left-side ARV representing sEMGasym. Asymmetry parameters (MinDiff, MaxDiff, Hip Hike) were calculated from poll, withers, and pelvis vertical displacement. Receiver-operating-characteristic (ROC) and area under the curve (AUC) analysis determined the accuracy of each parameter for distinguishing baseline from iFL or iHL. Both sEMG parameters performed better for detecting iHL (0.97≥AUC≥0.48) compared to iFL (0.77≥AUC≥0.49). sEMGabs performed better (0.97≥AUC≥0.49) than sEMGasym (0.76≥AUC≥0.48) for detecting both iFL and iHL. Like previous studies, MinDiff Poll and Pelvis asymmetry parameters (MinDiff, MaxDiff, Hip Hike) demonstrated excellent discrimination for iFL and iHL, respectively (AUC>0.95). Findings support future development of multivariate lameness-detection approaches that combine kinematics and sEMG. This may provide a more comprehensive approach to diagnosis, treatment, and monitoring of equine lameness, by measuring the underlying functional cause(s) at a neuromuscular level

    Reliability of surface electromyographic (sEMG) measures of equine axial and appendicular muscles during overground trot

    Get PDF
    The reliability of surface electromyography (sEMG) has not been adequately demonstrated in the equine literature and is an essential consideration as a methodology for application in clinical gait analysis. This observational study investigated within-session, intra-subject (stride-to-stride) and inter-subject reliability, and between-session reliability of normalised sEMG activity profiles, from triceps brachii (triceps), latissimus dorsi (latissimus), longissimus dorsi (longissimus), biceps femoris (biceps), superficial gluteal (gluteal) and semitendinosus muscles in n = 8 clinically non-lame horses during in-hand trot. sEMG sensors were bilaterally located on muscles to collect data during two test sessions (session 1 and 2) with a minimum 24-hour interval. Raw sEMG signals from ten trot strides per horse and session were DC-offset removed, high-pass filtered (40 Hz), full-wave rectified, and low-pass filtered (25 Hz). Signals were normalised to peak amplitude and percent stride before calculating intra- and inter-subject ensemble average sEMG profiles across strides for each muscle and session. sEMG profiles were assessed using waveform similarity statistics: the coefficient of variation (CV) to assess intra- and inter-subject reliability and the adjusted coefficient of multiple correlation (CMC) to evaluate between-session reliability. Across muscles, CV data revealed that intra-horse sEMG profiles within- and between-sessions were comparatively more reliable than inter-horse profiles. Bilateral gluteal, semitendinosus, triceps and longissimus (at T14 and L1) and right biceps showed excellent between-session reliability with group-averaged CMCs > 0.90 (range 0.90–0.97). Bilateral latissimus and left biceps showed good between-session reliability with group-averaged CMCs > 0.75 (range 0.78–0.88). sEMG profiles can reliably describe fundamental muscle activity patterns for selected equine muscles within a test session for individual horses (intra-subject). However, these profiles are more variable across horses (inter-subject) and between sessions (between-session reliability), suggesting that it is reasonable to use sEMG to objectively monitor the intra-individual activity of these muscles across multiple gait evaluation sessions at in-hand trot

    Adaptations in equine appendicular muscle activity and movement occur during induced fore- and hindlimb lameness: An electromyographic and kinematic evaluation

    Get PDF
    The relationship between lameness-related adaptations in equine appendicular motion and muscle activation is poorly understood and has not been studied objectively. The aim of this study was to compare muscle activity of selected fore- and hindlimb muscles, and movement of the joints they act on, between baseline and induced forelimb (iFL) and hindlimb (iHL) lameness. Three-dimensional kinematic data and surface electromyography (sEMG) data from the fore- (triceps brachii, latissimus dorsi) and hindlimbs (superficial gluteal, biceps femoris, semitendinosus) were bilaterally and synchronously collected from clinically non-lame horses ( n = 8) trotting over-ground (baseline). Data collections were repeated during iFL and iHL conditions (2-3/5 AAEP), induced on separate days using a modified horseshoe. Motion asymmetry parameters and continuous joint and pro-retraction angles for each limb were calculated from kinematic data. Normalized average rectified value (ARV) and muscle activation onset, offset and activity duration were calculated from sEMG signals. Mixed model analysis and statistical parametric mapping, respectively, compared discrete and continuous variables between conditions (α= 0.05). Asymmetry parameters reflected the degree of iFL and iHL. Increased ARV occurred across muscles following iFL and iHL, except non-lame side forelimb muscles that significantly decreased following iFL. Significant, limb-specific changes in sEMG ARV, and activation timings reflected changes in joint angles and phasic shifts of the limb movement cycle following iFL and iHL. Muscular adaptations during iFL and iHL are detectable using sEMG and primarily involve increased bilateral activity and phasic activation shifts that reflect known compensatory movement patterns for reducing weightbearing on the lame limb. With further research and development, sEMG may provide a valuable diagnostic aid for quantifying the underlying neuromuscular adaptations to equine lameness, which are undetectable through human observation alone

    \u3cem\u3eStreptococcus equi\u3c/em\u3e Infections in Horses: Guidelines for Treatment, Control, and Prevention of Strangles—Revised Consensus Statement

    Get PDF
    This consensus statement update reflects our current published knowledge and opinion about clinical signs, pathogenesis, epidemiology, treatment, complications, and control of strangles. This updated statement emphasizes varying presentations in the context of existing underlying immunity and carrier states of strangles in the transmission of disease. The statement redefines the “gold standard” for detection of possible infection and reviews the new technologies available in polymerase chain reaction diagnosis and serology and their use in outbreak control and prevention. We reiterate the importance of judicious use of antibiotics in horses with strangles. This updated consensus statement reviews current vaccine technology and the importance of linking vaccination with currently advocated disease control and prevention programs to facilitate the eradication of endemic infections while safely maintaining herd immunity. Differentiation between immune responses to primary and repeated exposure of subclinically infected animals and responses induced by vaccination is also addressed

    Local therapy of cancer with free IL-2

    Get PDF
    This is a position paper about the therapeutic effects of locally applied free IL-2 in the treatment of cancer. Local therapy: IL-2 therapy of cancer was originally introduced as a systemic therapy. This therapy led to about 20% objective responses. Systemic therapy however was very toxic due to the vascular leakage syndrome. Nevertheless, this treatment was a break-through in cancer immunotherapy and stimulated some interesting questions: Supposing that the mechanism of IL-2 treatment is both proliferation and tumoricidal activity of the tumor infiltrating cells, then locally applied IL-2 should result in a much higher local IL-2 concentration than systemic IL-2 application. Consequently a greater beneficial effect could be expected after local IL-2 application (peritumoral = juxtatumoral, intratumoral, intra-arterial, intracavitary, or intratracheal = inhalation). Free IL-2: Many groups have tried to prepare a more effective IL-2 formulation than free IL-2. Examples are slow release systems, insertion of the IL-2 gene into a tumor cell causing prolonged IL-2 release. However, logistically free IL-2 is much easier to apply; hence we concentrated in this review and in most of our experiments on the use of free IL-2. Local therapy with free IL-2 may be effective against transplanted tumors in experimental animals, and against various spontaneous carcinomas, sarcomas, and melanoma in veterinary and human cancer patients. It may induce rejection of very large, metastasized tumor loads, for instance advanced clinical tumors. The effects of even a single IL-2 application may be impressive. Not each tumor or tumor type is sensitive to local IL-2 application. For instance transplanted EL4 lymphoma or TLX9 lymphoma were not sensitive in our hands. Also the extent of sensitivity differs: In Bovine Ocular Squamous Cell Carcinoma (BOSCC) often a complete regression is obtained, whereas with the Bovine Vulval Papilloma and Carcinoma Complex (BVPCC) mainly stable disease is attained. Analysis of the results of local IL-2 therapy in 288 cases of cancer in human patients shows that there were 27% Complete Regressions (CR), 23% Partial Regressions (PR), 18% Stable Disease (SD), and 32% Progressive Disease (PD). In all tumors analyzed, local IL-2 therapy was more effective than systemic IL-2 treatment. Intratumoral IL-2 applications are more effective than peritumoral application or application at a distant site. Tumor regression induced by intratumoral IL-2 application may be a fast process (requiring about a week) in the case of a highly vascular tumor since IL-2 induces vascular leakage/edema and consequently massive tumor necrosis. The latter then stimulates an immune response. In less vascular tumors or less vascular tumor sites, regression may require 9–20 months; this regression is mainly caused by a cytotoxic leukocyte reaction. Hence the disadvantageous vascular leakage syndrome complicating systemic treatment is however advantageous in local treatment, since local edema may initiate tumor necrosis. Thus the therapeutic effect of local IL-2 treatment is not primarily based on tumor immunity, but tumor immunity seems to be useful as a secondary component of the IL-2 induced local processes. If local IL-2 is combined with surgery, radiotherapy or local chemotherapy the therapeutic effect is usually greater than with either therapy alone. Hence local free IL-2 application can be recommended as an addition to standard treatment protocols. Local treatment with free IL-2 is straightforward and can readily be applied even during surgical interventions. Local IL-2 treatment is usually without serious side effects and besides minor complaints it is generally well supported. Only small quantities of IL-2 are required. Hence the therapy is relatively cheap. A single IL-2 application of 4.5 million U IL-2 costs about 70 Euros. Thus combined local treatment may offer an alternative in those circumstances when more expensive forms of treatment are not available, for instance in resource poor countries
    corecore