5,438 research outputs found

    Large area space solar cell assemblies

    Get PDF
    Development of a large area space solar cell assembly is presented. The assembly consists of an ion implanted silicon cell and glass cover. The important attributes of fabrication are (1) use of a back surface field which is compatible with a back surface reflector, and (2) integration of coverglass application and call fabrication

    Further research on high open circuit voltage in silicon solar cells

    Get PDF
    The results of a new research on the use of controlled dopant profiles and oxide passivation to achieve high open circuit voltage V sub oc in silicon solar cells is presented. Ion implantation has been used to obtain nearly optimal values of surface dopant concentration. The concentrations are selected so as to minimize heavy doping effects and thereby provide both high blue response and high V sub oc ion implantation technique has been successfully applied to fabrication of both n-type and p-type emitters. V sub oc of up to 660 mV is reported and AMO efficiency of 16.1% has been obtained

    Processing technology for high efficiency silicon solar cells

    Get PDF
    Recent advances in silicon solar cell processing have led to attainment of conversion efficiency approaching 20%. The basic cell design is investigated and features of greatest importance to achievement of 20% efficiency are indicated. Experiments to separately optimize high efficiency design features in test structures are discussed. The integration of these features in a high efficiency cell is examined. Ion implantation has been used to achieve optimal concentrations of emitter dopant and junction depth. The optimization reflects the trade-off between high sheet conductivity, necessary for high fill factor, and heavy doping effects, which must be minimized for high open circuit voltage. A second important aspect of the design experiments is the development of a passivation process to minimize front surface recombination velocity. The manner in which a thin SiO2 layer may be used for this purpose is indicated without increasing reflection losses, if the antireflection coating is properly designed. Details are presented of processing intended to reduce recombination at the contact/Si interface. Data on cell performance (including CZ and ribbon) and analysis of loss mechanisms are also presented

    Optimal utility and probability functions for agents with finite computational precision

    No full text
    When making economic choices, such as those between goods or gambles, humans act as if their internal representation of the value and probability of a prospect is distorted away from its true value. These distortions give rise to decisions which apparently fail to maximize reward, and preferences that reverse without reason. Why would humans have evolved to encode value and probability in a distorted fashion, in the face of selective pressure for reward-maximizing choices? Here, we show that under the simple assumption that humans make decisions with finite computational precision––in other words, that decisions are irreducibly corrupted by noise––the distortions of value and probability displayed by humans are approximately optimal in that they maximize reward and minimize uncertainty. In two empirical studies, we manipulate factors that change the reward-maximizing form of distortion, and find that in each case, humans adapt optimally to the manipulation. This work suggests an answer to the longstanding question of why humans make “irrational” economic choices

    Clustering of Primordial Black Holes. II. Evolution of Bound Systems

    Full text link
    Primordial Black Holes (PBHs) that form from the collapse of density perturbations are more clustered than the underlying density field. In a previous paper, we showed the constraints that this has on the prospects of PBH dark matter. In this paper we examine another consequence of this clustering: the formation of bound systems of PBHs in the early universe. These would hypothetically be the earliest gravitationally collapsed structures, forming when the universe is still radiation dominated. Depending upon the size and occupation of the clusters, PBH merging occurs before they would have otherwise evaporated due to Hawking evaporation.Comment: 23 pages, 1 figure. Submitted to PR

    Excimer laser annealing for fabrication of low-cost solar cells

    Get PDF
    Pulsed excimer laser annealing was successfully performed using a 50 w laser. Both polished and texturized cells were tried, however, there are serious problems with nonuniformity on texturized cells. A number of cells were produced and compared to diffusion furnace annealed cells. There was no clear economic advantage in using an excimer laser and there was a small penalty on average efficiency. The conclusion was that the excimer laser anneal process must be able to produce superior cells to be considered as a viable process option

    Young and intermediate-age massive star clusters

    Full text link
    An overview of our current understanding of the formation and evolution of star clusters is given, with main emphasis on high-mass clusters. Clusters form deeply embedded within dense clouds of molecular gas. Left-over gas is cleared within a few million years and, depending on the efficiency of star formation, the clusters may disperse almost immediately or remain gravitationally bound. Current evidence suggests that a few percent of star formation occurs in clusters that remain bound, although it is not yet clear if this fraction is truly universal. Internal two-body relaxation and external shocks will lead to further, gradual dissolution on timescales of up to a few hundred million years for low-mass open clusters in the Milky Way, while the most massive clusters (> 10^5 Msun) have lifetimes comparable to or exceeding the age of the Universe. The low-mass end of the initial cluster mass function is well approximated by a power-law distribution, dN/dM ~ M^{-2}, but there is mounting evidence that quiescent spiral discs form relatively few clusters with masses M > 2 x 10^5 Msun. In starburst galaxies and old globular cluster systems, this limit appears to be higher, at least several x 10^6 Msun. The difference is likely related to the higher gas densities and pressures in starburst galaxies, which allow denser, more massive giant molecular clouds to form. Low-mass clusters may thus trace star formation quite universally, while the more long-lived, massive clusters appear to form preferentially in the context of violent star formation.Comment: 21 pages, 3 figures. To appear as invited review article in a special issue of the Phil. Trans. Royal Soc. A: Ch. 9 "Star clusters as tracers of galactic star-formation histories" (ed. R. de Grijs). Fully peer reviewed. PDFLaTeX, requires rspublic.cls style fil
    • …
    corecore