PROCESS DEVELOPMENT

N86-29381

EXCIMER LASER ANNEALING FOR FABRICATION OF LOW-COST SOLAR CELLS

SPIRE CORP.

M.B. Spitzer A.C. Greenwald S.J. Hogan

Program Goal

TO DETERMINE IF PULSED EXCIMER LASER ANNEALING (PELA) IS COST EFFECTIVE COMPARED TO BASELINE PROCESS.

BASELINE PROCESS	LASER PROCESS		
CLEAN	CLEAN		
DRY	DRY		
DIFFUSE JUNCTION	(ION IMPLANT		
ALUMINUM BSF	LASER ANNEAL.		
CLEAN			
PRINT Ag BACK	PRINT Ag BACK		
PRINT Ag FRONT	PRINT Ag FRONT		
LASER CUT	LASER CUT		
TEST AND SORT	TEST AND SORT		

Objectives

- BUILD AN EXCIMER LASER PULSED
 ANNEAL APPARA.US
- DEVELOP ANNEAL PROCESSING FOR HIGH EFFICIENCY CELLS
- FABRICATE 300 SOLAR CELLS
- PERFORM ECONOMIC ANALYSIS

PROCESS DEVELOPMENT

Laser-Annealed AR-Coated Cells

CELL	LOT	(á cm)	(mV)	(mA/cm ²)	(%)	Eff (%)
4615-4d	SW-27	0.34	616	31.2	80.2	15.4
4615-8e	WA70055	0.31	614	31.7	79.9	15.6
4615-12d	WA70055	0.17	617	30.4	90.2	150
4615-16a	WA20820	0.34	616	31.2	80.0	15.4
4615-20b	WA20979	2.2	592	32.0	79.5	15.1

NOTES: INSOLATION WAS SIMULATED AM1, 100mW/cm2. T=28°C. A=4cm2.

Advantages and Disadvantages of Laser Annealing

- RAPID DRY PROCESSING
- NO HEATING OF THE WAFER
- . TEXTURED WAFERS DIFFICULT TO ANNEAL
- NOT COMPATIBLE WITH SIO2 PASSIVATION

Best-Cell Comparison of Laser Annealing With Furnace Annealing (No AR Coatings)

CELL ANNEAL	V _{C O}	Jsc (mA/cm ²)	FF (%)	Eff (%)
4615-4d LASER	607	22.6	79.5	10.9
4524-13e SHORT FURNACE	612	23.6	81.4	11.8
4524-9c STANDARD FURNACE	615	23.9	82.0	12.0

NOTES: INSOLATION WAS SIMULATED AM1. 100 mW/cm2. T=28°C. A=4cm2.

1,

Large-Area AR-Coated Solar Cells

NO. OF CELLS	METALLIZATION	ANNEAL	V _{OC}	J _{SC} (mA/cm ²)	FF (%)	Eff (%)
7	PRINTED	LASER	589	27.1	72.8	11,5
7	PRINTED	FURNACE	590	28.9	71.5	12.1
4	EVAPORATED	LASER	590	28.9	77.9	13.3
5	EVAPORATED	FURNACE	591	30.8	77.4	14.1

NOTES: AREA OF EVAPORATED CELLS IS 53cm².
AREA OF SCREEN-PRINTED CELLS IS 77.9cm².
INSOLATION WAS AM1,100mW'cm². T-28°C

Excimer-Laser-Annealed Solar Cells

CONTACT	NO. OF CELLS	(mV)	J _{sc} (mA/cm ²)	FF (%)	. (%)	Effx 1.4 (%)
EVAPORATED	92	580	21.2	78.1	9.6	13.4
(53cm ²)		(3)	(0.3)	(0.6)	(0.2)	(0.3)
PRINTED	25	580	19.9	71.0	8.2	11.5
(77.9cm ²)		(2)	(0.3)	(2.0)	(0.3)	(0.4)

NOTES: INSOLATION WAS AM1, 100mW/cm², T=28°C.

Summary of Economic Analysis

PROCESS	COST-PER-WAFER (1985\$)
ION IMPLANT PHOSPHORUS (SPI-ION 1000)	0.18
TUBE FURNACE ANNEAL	0.07
BELT FURNACE ANNEAL	0.035
EXCIMER LASER	0.05

1MW/SHIFT, 3 SHIFTS/DAY, 90% YIELD.

Principal Findings

- (1) EXCIMER LASER ANNEAL IS SATISFACTORY WHEN APPLIED TO POLISHED WAFERS. ANNEALING OF TEXTURED WAFERS REQUIRES FURTHER WORK.
- (2) THE 50 WATT EXCIMER LASER IS CAPABLE OF HIGH THROUGHPUT PROCESSING.
- (3) LASER UNIFORMITY IS SUFFICIENT.
- (4) SCREEN-PRINTED CONTACTS CAN BE APPLIED TO EXCIMER-LASER-ANNEALED WAFERS.
- (5) ANALYSIS INDICATES THAT THE LASER MUST PRODUCE BETTER CELLS THAN THE FURNACE TO BE ECONOMICALLY COMPETITIVE.

7,2 ***