An overview of our current understanding of the formation and evolution of
star clusters is given, with main emphasis on high-mass clusters. Clusters form
deeply embedded within dense clouds of molecular gas. Left-over gas is cleared
within a few million years and, depending on the efficiency of star formation,
the clusters may disperse almost immediately or remain gravitationally bound.
Current evidence suggests that a few percent of star formation occurs in
clusters that remain bound, although it is not yet clear if this fraction is
truly universal. Internal two-body relaxation and external shocks will lead to
further, gradual dissolution on timescales of up to a few hundred million years
for low-mass open clusters in the Milky Way, while the most massive clusters (>
10^5 Msun) have lifetimes comparable to or exceeding the age of the Universe.
The low-mass end of the initial cluster mass function is well approximated by a
power-law distribution, dN/dM ~ M^{-2}, but there is mounting evidence that
quiescent spiral discs form relatively few clusters with masses M > 2 x 10^5
Msun. In starburst galaxies and old globular cluster systems, this limit
appears to be higher, at least several x 10^6 Msun. The difference is likely
related to the higher gas densities and pressures in starburst galaxies, which
allow denser, more massive giant molecular clouds to form. Low-mass clusters
may thus trace star formation quite universally, while the more long-lived,
massive clusters appear to form preferentially in the context of violent star
formation.Comment: 21 pages, 3 figures. To appear as invited review article in a special
issue of the Phil. Trans. Royal Soc. A: Ch. 9 "Star clusters as tracers of
galactic star-formation histories" (ed. R. de Grijs). Fully peer reviewed.
PDFLaTeX, requires rspublic.cls style fil