2,497 research outputs found

    A scalable and fast artificial neural network syndrome decoder for surface codes

    Full text link
    Surface code error correction offers a highly promising pathway to achieve scalable fault-tolerant quantum computing. When operated as stabiliser codes, surface code computations consist of a syndrome decoding step where measured stabiliser operators are used to determine appropriate corrections for errors in physical qubits. Decoding algorithms have undergone substantial development, with recent work incorporating machine learning (ML) techniques. Despite promising initial results, the ML-based syndrome decoders are still limited to small scale demonstrations with low latency and are incapable of handling surface codes with boundary conditions and various shapes needed for lattice surgery and braiding. Here, we report the development of an artificial neural network (ANN) based scalable and fast syndrome decoder capable of decoding surface codes of arbitrary shape and size with data qubits suffering from a variety of noise models including depolarising errors, biased noise, and spatially inhomogeneous noise. Based on rigorous training over 50 million random quantum error instances, our ANN decoder is shown to work with code distances exceeding 1000 (more than 4 million physical qubits), which is the largest ML-based decoder demonstration to-date. The established ANN decoder demonstrates an execution time in principle independent of code distance, implying that its implementation on dedicated hardware could potentially offer surface code decoding times of O(Ό\musec), commensurate with the experimentally realisable qubit coherence times. With the anticipated scale-up of quantum processors within the next decade, their augmentation with a fast and scalable syndrome decoder such as developed in our work is expected to play a decisive role towards experimental implementation of fault-tolerant quantum information processing.Comment: 11 pages, 6 figure

    Quantum computer error structure probed by quantum error correction syndrome measurements

    Full text link
    With quantum devices rapidly approaching qualities and scales needed for fault tolerance, the validity of simplified error models underpinning the study of quantum error correction needs to be experimentally evaluated. In this work, we have directly assessed the performance of superconducting devices implementing heavy-hexagon code syndrome measurements with increasing circuit sizes up to 23 qubits, against the error assumptions underpinning code threshold calculations. Data from 16 repeated syndrome measurement cycles was found to be inconsistent with a uniform depolarizing noise model, favouring instead biased and inhomogeneous noise models. Spatial-temporal correlations investigated via ZZ stabilizer measurements revealed significant temporal correlation in detection events. These results highlight the non-trivial structure which may be present in the noise of quantum error correction circuits and support the development of noise-tailored codes and decoders to adapt

    Solar astronomy

    Get PDF
    An overview is given of modern solar physics. Topics covered include the solar interior, the solar surface, the solar atmosphere, the Large Earth-based Solar Telescope (LEST), the Orbiting Solar Laboratory, the High Energy Solar Physics mission, the Space Exploration Initiative, solar-terrestrial physics, and adaptive optics. Policy and related programmatic recommendations are given for university research and education, facilitating solar research, and integrated support for solar research

    The Type IIP SN 2007od in UGC 12846: from a bright maximum to dust formation in the nebular phase

    Get PDF
    Ultraviolet (UV), optical and near infrared (NIR) observations of the type IIP supernova (SN) 2007od are presented, covering from the maximum light to the late phase, allowing to investigate in detail different physical phenomena in the expanding ejecta. These data turn this object into one of the most peculiar IIP ever studied. The early light curve of SN 2007od is similar to that of a bright IIPs with a short plateau, a bright peak (MV = -18 mag), but a very faint optical light curve at late time. However, with the inclusion of mid infrared (MIR) observations during the radioactive decay we have estimate a M(56Ni) ~ 2\times10^-2 M\odot. Modeling the bolometric light curve, ejecta expansion velocities and black-body temperature, we estimate a total ejected mass was 5 - 7.5 M\odot with a kinetic energy of at least 0.5 \times 10^51 erg. The early spectra reveal a boxy H{\alpha} profile and high velocities features of the Balmer series that suggest interaction between the ejecta and a close circum-stellar matter (CSM). SN 2007od may be, therefore, an intermediate case between a Type IIn SN and a typical Type IIP SN. Also late spectra show a clear evidence of CSM and the presence of dust formed inside the ejecta. The episodes of mass loss short before explosion, the bright plateau, along with the relatively small amount of 56Ni and the faint [O I] observed in the nebular spectra are consistent with a super-asympthotic giant branch (super-AGB) progenitor (M~9.7 - 11 M\odot).Comment: V2, some test added and three figures changed from the first version. 21 pages, 18 figures, accepted for publication in MNRAS on May 24, 201

    EROS Variable Stars : Discovery of Beat Cepheids in the Small Magellanic Cloud and the effect of metallicity on pulsation

    Get PDF
    We report the discovery of eleven beat Cepheids in the Small Magellanic Cloud, using data obtained by the EROS microlensing survey. Four stars are beating in the fundamental and first overtone mode (F/1OT), seven are beating in the first and second overtone (1OT/2OT). The SMC F/1OT ratio is systematically higher than the LMC F/1OT, while the 1OT/2OT period ratio in the SMC Cepheids is the same as the LMC one.Comment: 4 pages, Latex file with 4 .ps figures. accepted for publication in A A Letter

    The effect of metallicity on the Cepheid distance scale and its implications for the Hubble constant (H0H_0) determination

    Full text link
    Recent HST determinations of the expansion's rate of the Universe (the Hubble constant, H_0) assumed that the Cepheid Period-Luminosity relation at V and I are independent of metallicity (Freedman, et al., 1996, Saha et al., 1996, Tanvir et al., 1995). The three groups obtain different vales for H_0. We note that most of this discrepancy stems from the asumption (by both groups) that the Period-Luminosity relation is independent of metallicity. We come to this conclusion as a result of our study of the Period-Luminosity relation of 481 Cepheids with 3 millions two colour measurements in the Large Magellanic Cloud and the Small Magellanic Cloud obtained as a by-product of the EROS microlensing survey. We find that the derived interstellar absorption corrections are particularly sensitive to the metallicity and when our result is applied to recent estimates based on HST Cepheids observations it makes the low-H_0 values higher and the high-H_0 value lower, bringing those discrepant estimates into agrement around H0≈70km/sMpc−1H_0 \approx 70 km/s Mpc^{-1}.Comment: 4 pages, Latex, with 2 .ps accepted for publication astronomy and astrophysics Letter

    Observational Limits on Machos in the Galactic Halo

    Get PDF
    We present final results from the first phase of the EROS search for gravitational microlensing of stars in the Magellanic Clouds by unseen deflectors (machos: MAssive Compact Halo Objects). The search is sensitive to events with time scales between 15 minutes and 200 days corresponding to deflector masses in the range 1.e-7 to a few solar masses. Two events were observed that are compatible with microlensing by objects of mass of about 0.1 Mo. By comparing the results with the expected number of events for various models of the Galaxy, we conclude that machos in the mass range [1.e-7, 0.02] Mo make up less than 20% (95% C.L.) of the Halo dark matter.Comment: 4 pages, 3 Postscript figures, to be published in Astronomy & Astrophysic

    Long-Term Effects From A School-Based Trial Comparing Interpersonal Psychotherapy-Adolescent Skills Training To Group Counseling

    Get PDF
    Adolescence represents a vulnerable developmental period for depression and an opportune time for prevention efforts. In this study, 186 adolescents with elevated depressive symptoms (M age = 14.01, SD = 1.22; 66.7% female; 32.2% racial minority) were randomized to receive either Interpersonal Psychotherapy–Adolescent Skills Training (IPT-AST; n = 95) delivered by research clinicians or group counseling (GC; n = 91) delivered by school counselors. We previously reported the short-term outcomes of this school-based randomized controlled trial: IPT-AST youth experienced significantly greater improvements in depressive symptoms and overall functioning through 6-month follow-up. Here, we present the long-term outcomes through 24 months postintervention. We examined differences in rates of change in depressive symptoms and overall functioning and differences in rates of depression diagnoses. Youth in both conditions showed significant improvements in depressive symptoms and overall functioning from baseline to 24-month follow-up, demonstrating the efficacy of school-based depression prevention programs. However, the two groups did not differ in overall rates of change or in rates of depression diagnoses from baseline to 24-month follow-up. Although IPT-AST demonstrated advantages over GC in the short term, these effects dissipated over long-term follow-up. Specifically, from 6- to 24-month follow-up, GC youth showed continued decreases in depressive symptoms, whereas IPT-AST youth showed a nonsignificant increase in symptoms. GC youth remained relatively stable in overall functioning, whereas IPT-AST youth experienced a small but statistically significant worsening in functioning. This study highlights the potential of school-based depression prevention efforts and the need for further research

    Calibrated Sub-Bundles in Non-Compact Manifolds of Special Holonomy

    Full text link
    This paper is a continuation of math.DG/0408005. We first construct special Lagrangian submanifolds of the Ricci-flat Stenzel metric (of holonomy SU(n)) on the cotangent bundle of S^n by looking at the conormal bundle of appropriate submanifolds of S^n. We find that the condition for the conormal bundle to be special Lagrangian is the same as that discovered by Harvey-Lawson for submanifolds in R^n in their pioneering paper. We also construct calibrated submanifolds in complete metrics with special holonomy G_2 and Spin(7) discovered by Bryant and Salamon on the total spaces of appropriate bundles over self-dual Einstein four manifolds. The submanifolds are constructed as certain subbundles over immersed surfaces. We show that this construction requires the surface to be minimal in the associative and Cayley cases, and to be (properly oriented) real isotropic in the coassociative case. We also make some remarks about using these constructions as a possible local model for the intersection of compact calibrated submanifolds in a compact manifold with special holonomy.Comment: 20 pages; for Revised Version: Minor cosmetic changes, some paragraphs rewritten for improved clarit

    A kapwa-infused paradigm in teaching Catholic theology/catechesis in a multireligious classroom in the Philippines

    Get PDF
    The increasing religious diversity in educational space has raised a legitimate question on how Catholic theology/ catechesis must be taught in Philippine Catholic universities given the institutional mandate to educate students “into the faith of the Church through teaching of Christian doctrine in an organic and systematic way” (Wuerl, 2013, 1). On this note, the paper makes reference to “centered plural- ism” (CP), a positional posture espoused by Georgetown University in dealing with this predicament. In an attempt to (re) appropriate CP into local context, there is a need to explore the Filipino conception of self/others as enveloped within the indigenous concept of kapwa. Hereon, the paper finds that CP is not just feasibly suitable in local context but with kapwa's more inclusive description of the relationship of self and others, a CP‐based teaching paradigm in theology/ catechesis is a promising project in the educational scene of the Philippines
    • 

    corecore