1,510 research outputs found

    Thermal evolution of hybrid stars within the framework of a nonlocal Nambu--Jona-Lasinio model

    Get PDF
    We study the thermal evolution of neutron stars containing deconfined quark matter in their core. Such objects are generally referred to as quark-hybrid stars. The confined hadronic matter in their core is described in the framework of non-linear relativistic nuclear field theory. For the quark phase we use a non-local extension of the SU(3) Nambu Jona-Lasinio model with vector interactions. The Gibbs condition is used to model phase equilibrium between confined hadronic matter and deconfined quark matter. Our study indicates that high-mass neutron stars may contain between 35 and 40 % deconfined quark-hybrid matter in their cores. Neutron stars with canonical masses of around 1.4 M⊙1.4\, M_\odot would not contain deconfined quark matter. The central proton fractions of the stars are found to be high, enabling them to cool rapidly. Very good agreement with the temperature evolution established for the neutron star in Cassiopeia A (Cas A) is obtained for one of our models (based on the popular NL3 nuclear parametrization), if the protons in the core of our stellar models are strongly paired, the repulsion among the quarks is mildly repulsive, and the mass of Cas A has a canonical value of 1.4 M⊙1.4\, M_\odot.Comment: 10 pages, 7 figure

    Thermal evolution of hybrid stars within the framework of a nonlocal Nambu-Jona-Lasinio model

    Get PDF
    We study the thermal evolution of neutron stars containing deconfined quark matter in their core. Such objects are generally referred to as quark-hybrid stars. The confined hadronic matter in their core is described in the framework of nonlinear relativistic nuclear field theory. For the quark phase we use a nonlocal extension of the SU(3) Nambu-Jona-Lasinio model with vector interactions. The Gibbs condition is used to model phase equilibrium between confined hadronic matter and deconfined quark matter. Our study indicates that high-mass neutron stars may contain between 35 and 40% deconfined quark-hybrid matter in their cores. Neutron stars with canonical masses of around 1.4M⊙ would not contain deconfined quark matter. The central proton fractions of the stars are found to be high, enabling them to cool rapidly. Very good agreement with the temperature evolution established for the neutron star in Cassiopeia A (Cas A) is obtained for one of our models (based on the popular NL3 nuclear parametrization), if the protons in the core of our stellar models are strongly paired, the repulsion among the quarks is mildly repulsive, and the mass of Cas A has a canonical value of 1.4M⊙.Facultad de Ciencias Astronómicas y GeofísicasInstituto de Física La Plat

    Thermal evolution of hybrid stars within the framework of a nonlocal Nambu-Jona-Lasinio model

    Get PDF
    We study the thermal evolution of neutron stars containing deconfined quark matter in their core. Such objects are generally referred to as quark-hybrid stars. The confined hadronic matter in their core is described in the framework of nonlinear relativistic nuclear field theory. For the quark phase we use a nonlocal extension of the SU(3) Nambu-Jona-Lasinio model with vector interactions. The Gibbs condition is used to model phase equilibrium between confined hadronic matter and deconfined quark matter. Our study indicates that high-mass neutron stars may contain between 35 and 40% deconfined quark-hybrid matter in their cores. Neutron stars with canonical masses of around 1.4M⊙ would not contain deconfined quark matter. The central proton fractions of the stars are found to be high, enabling them to cool rapidly. Very good agreement with the temperature evolution established for the neutron star in Cassiopeia A (Cas A) is obtained for one of our models (based on the popular NL3 nuclear parametrization), if the protons in the core of our stellar models are strongly paired, the repulsion among the quarks is mildly repulsive, and the mass of Cas A has a canonical value of 1.4M⊙.Facultad de Ciencias Astronómicas y GeofísicasInstituto de Física La Plat

    Isotopic Composition of Light Nuclei in Cosmic Rays: Results from AMS-01

    Get PDF
    The variety of isotopes in cosmic rays allows us to study different aspects of the processes that cosmic rays undergo between the time they are produced and the time of their arrival in the heliosphere. In this paper we present measurements of the isotopic ratios 2H/4He, 3He/4He, 6Li/7Li, 7Be/(9Be+10Be) and 10B/11B in the range 0.2-1.4 GeV of kinetic energy per nucleon. The measurements are based on the data collected by the Alpha Magnetic Spectrometer, AMS-01, during the STS-91 flight in 1998 June.Comment: To appear in ApJ. 12 pages, 11 figures, 6 table

    Performance of the TOTEM Detectors at the LHC

    Get PDF
    The TOTEM Experiment is designed to measure the total proton-proton cross-section with the luminosity-independent method and to study elastic and diffractive pp scattering at the LHC. To achieve optimum forward coverage for charged particles emitted by the pp collisions in the interaction point IP5, two tracking telescopes, T1 and T2, are installed on each side of the IP in the pseudorapidity region 3.1 < = |eta | < = 6.5, and special movable beam-pipe insertions - called Roman Pots (RP) - are placed at distances of +- 147 m and +- 220 m from IP5. This article describes in detail the working of the TOTEM detector to produce physics results in the first three years of operation and data taking at the LHC.Comment: 40 pages, 31 figures, submitted to Int. J. Mod. Phys.

    Proton-proton elastic scattering at the LHC energy of {\surd} = 7 TeV

    Full text link
    Proton-proton elastic scattering has been measured by the TOTEM experiment at the CERN Large Hadron Collider at {\surd}s = 7 TeV in dedicated runs with the Roman Pot detectors placed as close as seven times the transverse beam size (sbeam) from the outgoing beams. After careful study of the accelerator optics and the detector alignment, |t|, the square of four-momentum transferred in the elastic scattering process, has been determined with an uncertainty of d t = 0.1GeV p|t|. In this letter, first results of the differential cross section are presented covering a |t|-range from 0.36 to 2.5GeV2. The differential cross-section in the range 0.36 < |t| < 0.47 GeV2 is described by an exponential with a slope parameter B = (23.6{\pm}0.5stat {\pm}0.4syst)GeV-2, followed by a significant diffractive minimum at |t| = (0.53{\pm}0.01stat{\pm}0.01syst)GeV2. For |t|-values larger than ~ 1.5GeV2, the cross-section exhibits a power law behaviour with an exponent of -7.8_\pm} 0.3stat{\pm}0.1syst. When compared to predictions based on the different available models, the data show a strong discriminative power despite the small t-range covered.Comment: 12pages, 5 figures, CERN preprin

    Elastic Scattering and Total Cross-Section in p+p reactions measured by the LHC Experiment TOTEM at sqrt(s) = 7 TeV

    Full text link
    Proton-proton elastic scattering has been measured by the TOTEM experiment at the CERN Large Hadron Collider at s=7\sqrt{s} = 7 TeV in special runs with the Roman Pot detectors placed as close to the outgoing beam as seven times the transverse beam size. The differential cross-section measurements are reported in the |t|-range of 0.36 to 2.5 GeV^2. Extending the range of data to low t values from 0.02 to 0.33 GeV^2,and utilizing the luminosity measurements of CMS, the total proton-proton cross section at sqrt(s) = 7 TeV is measured to be (98.3 +- 0.2(stat) +- 2.8(syst)) mb.Comment: Proceedings of the XLI International Symposium on Multiparticle Dynamics. Accepted for publication in Prog. Theor. Phy
    • …
    corecore