13 research outputs found
Airport veer-off risk assessment: An italian case study
The objective of this paper is to assess the veer-off risk of an Italian airport that is characterized for having near 12,000 annual movements. The name of this airport is not disclosed for security purposes. The methodology used followed the principles of probabilistic risk analysis in order to characterize the events and assess the corresponding damages. The study used statistical data about accident reports and local conditions that were collected following the standards of the International Civil Aviation Organization (ICAO). The methodology used in this work complies with the guidelines for the adjustment of lateral runway strips, edited by the Italian Civil Aviation Authority (ENAC). Besides, data available in worldwide databases of airplane accidents were also gathered and included as part of the analysis. The method used to assess the veer-off risk of the airport is consistent with probability and damage quantification methods published in the literature. The main variables considered in the analysis were traffic information, wind conditions, the existence of landsidebuildings adjacent to the runway, and the geotechnical conditions of the subgrade underneath the strip zones. For the assessment of the veer-off risk, the authors used primary data provided by the airport management body within the period 2013-2015 and secondary data available in the literature. The risk of veer-off was calculated in more than 1,500 points around the runway. Besides, the authors proposed maximum allowable risks in different locations, and these values were compared to the actual risk levels previously computed. The results of this comparison suggested that improvements in the soil capacity and/or in the airport management activities might contribute to achieve the proposed allowable risk. The results from this assessment showed that the two critical variables determining the risk of veer-off accidents in the airport under evaluation were wind conditions and the bearing capacity of the soil underneath the strip areas. Also, it was found that the highest veer-off risk level obtained within the Cleared and Graded Area (CGA, part of the runway strip cleared of all obstacles and graded) was 2 10-7, while the lowest level was 3 10-8, which are considered typical risk ranges in airport operations. In general, the results demonstrate that the adopted methodology is a useful tool to evaluate the veer-off risk of a specific airport. Besides, the method allows comparing the actual levels of risk with proposed target levels of safety.Consequently, the quantification of the veer-off risk levels offers the airport management body the possibility of implementing appropriate measurements in those cases where minimum safety requirements are not achieved
A Coupled Micromechanical Model of Moisture-Induced Damage in Asphalt Mixtures: Formulation and Applications
The deleterious effect of moisture on the structural integrity of asphalt mixtures has been recognized as one of the main causes of early deterioration of asphalt pavements. This phenomenon, usually referred to as moisture damage, is defined as the progressive loss of structural integrity of the mixture that is primarily caused by the presence of moisture in liquid or vapor state. Moisture damage is associated with the development of different physical, mechanical, and chemical processes occurring within the microstructure of the mixture at different intensities and rates. Although there have been important advancements in identifying and characterizing this phenomenon, there is still a lack of understanding of the damage mechanisms occurring at the microscopic level. This situation has motivated the research work reported in this dissertation.
The main objective of this dissertation is to formulate and apply a numerical micromechanical model of moisture-induced damage in asphalt mixtures. The model focuses on coupling the effects of moisture diffusion—one of the three main modes of moisture transport within asphalt mixtures—with the mechanical performance of the microstructure. Specifically, the model aims to account for the effect of moisture diffusion on the degradation of the viscoelastic bulk matrix of the mixture (i.e., cohesive degradation) and on the gradual deterioration of the adhesive bonds between the aggregates and the asphalt matrix (i.e., adhesive degradation).
The micromechanical model was applied to study the role of some physical and mechanical properties of the constitutive phases of the mixtures on the susceptibility of the mixture to moisture damage. The results from this analysis suggest that the diffusion coefficients of the asphalt matrix and aggregates, as well as the bond strength of the aggregate-matrix interface, have the most influence on the moisture susceptibility of the mixtures.
The micromechanical model was further used to investigate the influence of the void phase of asphalt mixtures on the generation of moisture-related deterioration processes. Two different probabilistic-based approaches were used to accomplish this objective. In the first approach, a volumetric distribution of air voids sizes measured using X-Ray Computed Tomography in a dense-graded asphalt mixture was used to generate probable void structures in a microstructure of an asphalt mixture. In the second approach, a stochastic modeling technique based on random field theory was used to generate probable air voids distributions of the mixture. In this second approach, the influence of the air voids was accounted for by making the physical and mechanical properties of the asphalt matrix dependent on probable voids distributions. Although both approaches take into consideration the characteristics of the air void phase on the mechanical response of the mixtures subjected to moist environments, the former explicitly introduces the air phase within the microstructure while the latter indirectly includes its effects by modifying the material properties of the bulk matrix. The results from these simulations demonstrated that the amount, variability and location of air voids are decisive in determining the moisture-dependent performance of asphalt mixtures.
The results from this dissertation provide new information on the kinetics of moisture damage mechanisms in asphalt mixtures. In particular, the results obtained from applying the micromechanical model permitted identification of the relative influence of the characteristics of the constitutive phases of a mixture on its moisture-related mechanical performance. This information can be used as part of design methodologies of asphalt mixtures, and/or as an input in life-cycle analysis models and maintenance programs of road infrastructure
Prácticas docentes que promueven el aprendizaje activo en ingeniería civil
Las condiciones sociales, políticas y económicas del nuevo siglo muestran que el perfil del ingeniero actual es muy distinto al del ingeniero de hace varias décadas. En este sentido, numerosos estudios han demostrado que las metodologías de clase en las que se promueve que el estudiante sea el constructor de su propio aprendizaje (aprendizaje activo) son más eficientes en el la formación de las actitudes y habilidades que el ingenie, o requerirá en su vida profesional. Este artículo presenta la experiencia realizada en los últimos dos años al interior de algunos cursos del departamento de Ingeniería Civil, en los cuales se han implementado actividades que promueven el aprendizaje activo. Los resultados confirman la eficiencia de estos métodos y sugieren la necesidad de reflexionar sobre una reestructuración curricular integral del programa, que contribuya a la formación de los ingenieros que la sociedad necesita
Modelación del ahuellamiento en mezclas asfálticas de pavimentos
Este artículo presenta los resultados de la modelación del ahuellamiento de materiales asfálticos, generado por el paso lento de vehículos de transporte masivo sobre las carpetas de rodadura de pavimentos en zonas de paraderos. Para la modelación se emplearon leyes de flujo de materiales bituminosos encontrados con base en ensayos triaxiales cíclicos [1] y resultados de ensayos de resistencia a la deformación plástica de mezclas asfálticas [2]. Los resultados muestran que las leyes dinámicas de flujo de estas mezclas sirven para simular adecuadamente el ahuellamiento; y que la temperatura, la frecuencia de aplicación de carga y la rigidez del material son los factores de mayor importancia en la ocurrencia de este fenómeno.
Modelo numérico para analizar el efecto del clima en Pavimentos
Este artículo presenta el desarrollo de un modelo numérico para analizar el efecto del agua libre y la temperatura al interior de un pavimento flexible. Con base en las ecuaciones de conservación de masa y temperatura y las leyes de flujo de agua y energía, el modelo determina la variación de las propiedades hídricas, térmicas y mecánicas al interior del pavimento. Se implementó un software para solucionar el modelo numérico y analizar gráficamente los resultados. Se realizaron simulaciones sobre pavimentos flexibles para tráfico medio-alto. Los resultados demostraron una fuerte degradación en los módulos de rigidez de las capas del pavimento y permitieron corroborar los beneficios de una estructura de drenaje adecuada
Tomografía computarizada con rayos-x y sistema de imágenes de agregados (aims) para el estudio de mezclas asfálticas y agregados
La caracterización de las propiedades de los materiales empleados en ingeniería de pavimentos es fundamental pa-ra garantizar diseños confiables, estructuras durables y planes de mantenimiento y rehabilitación efectivos. Este artí-culo describe dos técnicas no destructivas basadas en la toma y procesamiento de imágenes que han sido exitosa-mente empleadas para caracterizar materiales de pavimentos: 1) tomografía computarizada con rayos-X, y 2) Siste-ma de Imágenes de Agregados. La primera técnica permite caracterizar la estructura interna de mezclas asfálticas con el fin de analizar y modelar su desempeño. En particular, esta técnica ha permitido estudiar el contenido, tama-ño, distribución y conectividad de los vacíos y la relación de estas variables con la susceptibilidad al deterioro por la presencia de humedad, la capilaridad y la permeabilidad de las mezclas. El Sistema de Imágenes de Agregados fue desarrollado para caracterizar las propiedades morfológicas de los agregados (i.e., forma, angularidad y textura), técnica que proporciona importantes ventajas con respecto a los ensayos estándar ya que las mediciones son obje-tivas, de rápida ejecución, repetibles y reproducibles. El objetivo de este documento es describir los aspectos teóri-cos básicos y algunas aplicaciones recientes de estas técnicas que representan nuevas herramientas para mejorar los procesos de caracterización de los materiales empleados en ingeniería de pavimentos.Achieving reliable pavement design, durable roadway structures and effective maintenance and rehabilitation plans requires the suitable characterisation of the materials used in pavement construction. This paper describes two non-destructive techniques based on image acquisition and analysis and their successful application in pavement engi-neering: X-ray computed tomography (X-ray CT) and aggregate imaging system (AIMS). The former has been used for characterising the internal structure of asphalt mixes to analyse and model their performance; it has been particu-larly used for studying the content, size, distribution and connectivity of air-voids and these variables’ relationship with moisture damage susceptibility, capillarity and permeability within the mixes. AIMS was intended for characterri-sing aggregates’ morphological properties (i.e., form, angularity and texture). This technique provides important ad-vantages regarding the standard methods used for obtaining the same aggregate properties: it is objective, reliable, reproducible and can be carried out quickly. This paper was aimed at describing these two techniques’ theoretical backgrounds, mention some recent applications and provide insight into how existing characterisation of materials used in pavement construction can be improved
Determinación de la energía superficial libre de cementos asfálticos colombianos
La energía superficial libre (ESL) de un material se define como la energía necesaria para crear una nueva unidad de superficie en condiciones de vacío. Dicha propiedad está directamente relacionada con la resistencia a la fractura y recuperación (i.e., healing) de un material y con la capacidad de crear fuertes adhesiones con otros materiales. Adicionalmente, la calidad de la adhesión entre un cemento asfáltico y un agregado se puede evaluar mediante la cuantificación del trabajo de adhesión entre estos materiales. Este valor se puede emplear como un parámetro complementario para la selección y combinación óptima de materiales para mezclas asfálticas, así como en la modelación micromecánica de procesos de fractura y recuperación de dichas mezclas. Este documento describe una técnica de medición de la ESL de cementos asfálticos basada en el uso de la placa de Wilhelmy y reporta las primeras mediciones de ESL disponibles para los cementos asfálticos producidos en las refinerías colom- bianas de Barrancabermeja y Apiay. Los resultados correspondientes y la ESL de diversos agregados fueron usados para analizar las diferencias en el trabajo de adhesión de varias combinaciones de cemento asfáltico y agregado en condición seca. Dentro de los materiales analizados, el mayor trabajo de adhesión fue el producido por el cemento asfáltico de Barrancabermeja. Los resultados sugieren además que el efecto de un llenante mineral específico sobre la ESL del cemento asfáltico es particular para cada ligante asfáltico. Dicho efecto no necesariamente conlleva al incremento de la ESL del sistema cemento asfáltico-llenante mineral
En busca de pavimentos más durables
Materiales innovadores: una apuesta de investigaciónMesclando materiales con nuevos elementos o variando las proporciones de los que se emplean habitualmente, un grupo de ingenieros de la Universidad de los Andes investiga los efectos que pueden tener en las capas asfálticas de los pavimentos flexibles y en las bases que se utilizan para asentar las losas de concreto en pavimentos rígido