1,047 research outputs found

    Can catastrophic quenching be alleviated by separating shear and alpha effect?

    Full text link
    The small-scale magnetic helicity produced as a by-product of the large-scale dynamo is believed to play a major role in dynamo saturation. In a mean-field model the generation of small-scale magnetic helicity can be modelled by using the dynamical quenching formalism. Catastrophic quenching refers to a decrease of the saturation field strength with increasing Reynolds number. It has been suggested that catastrophic quenching only affects the region of non-zero helical turbulence (i.e. where the kinematic alpha operates) and that it is possible to alleviate catastrophic quenching by separating the region of strong shear from the alpha layer. We perform a systematic study of a simple axisymmetric two-layer alpha-omega dynamo in a spherical shell for Reynolds numbers in the range 1 < Rm < 10^5. In the framework of dynamical quenching we show that this may not be the case, suggesting that magnetic helicity fluxes would be necessary.Comment: 8 pages, 5 figures (Accepted in Geophysical and Astrophysical Fluid Dynamics

    Rapidly rotating Rayleigh-BĂ©nard convection with a tilted axis

    Get PDF
    We numerically explore the dynamics of an incompressible fluid heated from below, bounded by free-slip horizontal plates and periodic lateral boundary conditions, subject to rapid rotation about a distant axis that is tilted with respect to the gravity vector. The angle ϕ between the rotation axis and the horizontal plane measures the tilting of the rotation axis; it can be taken as a proxy for latitude if we think of a local Cartesian representation of the convective dynamics in a rotating fluid shell. The results of the simulations indicate the existence of three different convective regimes, depending on the value of ϕ: (1) sheared, intermittent large-scale winds in the direction perpendicular to the plane defined by the gravity and rotation vectors, when rotation is “horizontal” (ϕ=0∘); (2) a large-scale cyclonic vortex tilted along the rotation axis, when the angle between the rotation axis and the gravity vector is relatively small (ϕ between about 45∘ and 90∘); and (3) a new intermediate regime characterized by vertically sheared large-scale winds perpendicular to both gravity and rotation. In this regime, the winds are organized in bands that are tilted along the rotation axis, with unit horizontal wave number in the plane defined by gravity and rotation at values of ϕ less than about 60∘. This intermediate solution, studied for the first time in this work, is characterized by weaker vertical heat transport than the cases with large-scale vortices. For intermediate values of ϕ (between about 45∘ and 60∘), the banded, sheared solution coexists with the large-scale vortex solution, with different initial conditions leading to one or the other dynamical behavior. A discussion of the possible implications of these results for the dynamics of rapidly rotating planetary atmospheres is provided

    Angular-momentum coupling through the tachocline

    Full text link
    Astronomical observation of stellar rotation suggests that at least the surface layers of the Sun have lost a substantial amount of the angular momentum that they possessed at the beginning of the main-sequence phase of evolution; and solar-wind observations indicate that magnetic coupling is still draining angular momentum from the Sun today. In addition, helioseismological analysis has shown that the specific angular momentum at the top of the almost uniformly rotating radiative interior is approximately (although not exactly) the same as the spherically averaged value at the base of the (differentially rotating) convection zone, suggesting that angular momentum is being transported through the tachocline. The mechanism by which that transport is taking place is not understood. Nor is there a consensus of opinion. I review some of the suggestions that have been put forward, biassing my discussion, no doubt, according to my own opinions.Comment: 19 pages, 7 figures, conference on `Magnetic coupling between the interior and the atmosphere of the Sun' ed. S. S. Hasan and R. J. Rutten, Bangalore, December 200

    The impact of a supplementary medication review and counselling service within the oncology outpatient setting

    Get PDF
    The impact on the care of breast cancer patients, of a pharmacy technician-led medication review and counselling clinic, provided in an outpatient setting, was investigated using a controlled randomised study. Compared to the controls, clinic patients showed a significantly improved level of understanding of their chemotherapy support medication (95% CI for difference in mean knowledge rating scores=2.165–2.826, P<0.001) and a significant reduction in the median number of support items required (two compared to five in the control, P<0.001). This resulted in a significant reduction in mean medication expenditure per patient (£26.70 vs £10.20, 95% CI for the mean difference in cost £6.72–£26.26, P<0.001). The clinic was also associated with significant reductions in chemotherapy delays (P<0.001) and dose reductions due to side effects (P=0.003). Other benefits from the clinic were a reduction in pharmacy dispensing time and a highly significant reduction in pharmacy time spent resolving post-clinic prescription queries (P<0.001). Taking into account the initial technician training cost, the scheme represented an annual saving to the Trust of over £15 000. The clinic serves as a model for those wishing to improve outpatient services to breast cancer patients

    Interaction Between Convection and Pulsation

    Get PDF
    This article reviews our current understanding of modelling convection dynamics in stars. Several semi-analytical time-dependent convection models have been proposed for pulsating one-dimensional stellar structures with different formulations for how the convective turbulent velocity field couples with the global stellar oscillations. In this review we put emphasis on two, widely used, time-dependent convection formulations for estimating pulsation properties in one-dimensional stellar models. Applications to pulsating stars are presented with results for oscillation properties, such as the effects of convection dynamics on the oscillation frequencies, or the stability of pulsation modes, in classical pulsators and in stars supporting solar-type oscillations.Comment: Invited review article for Living Reviews in Solar Physics. 88 pages, 14 figure

    Methods for specifying the target difference in a randomised controlled trial : the Difference ELicitation in TriAls (DELTA) systematic review

    Get PDF
    Peer reviewedPublisher PD

    The evolution of rotating stars

    Full text link
    First, we review the main physical effects to be considered in the building of evolutionary models of rotating stars on the Upper Main-Sequence (MS). The internal rotation law evolves as a result of contraction and expansion, meridional circulation, diffusion processes and mass loss. In turn, differential rotation and mixing exert a feedback on circulation and diffusion, so that a consistent treatment is necessary. We review recent results on the evolution of internal rotation and the surface rotational velocities for stars on the Upper MS, for red giants, supergiants and W-R stars. A fast rotation is enhancing the mass loss by stellar winds and reciprocally high mass loss is removing a lot of angular momentum. The problem of the ``break-up'' or Ω\Omega-limit is critically examined in connection with the origin of Be and LBV stars. The effects of rotation on the tracks in the HR diagram, the lifetimes, the isochrones, the blue to red supergiant ratios, the formation of W-R stars, the chemical abundances in massive stars as well as in red giants and AGB stars, are reviewed in relation to recent observations for stars in the Galaxy and Magellanic Clouds. The effects of rotation on the final stages and on the chemical yields are examined, as well as the constraints placed by the periods of pulsars. On the whole, this review points out that stellar evolution is not only a function of mass M and metallicity Z, but of angular velocity Ω\Omega as well.Comment: 78 pages, 7 figures, review for Annual Review of Astronomy and Astrophysics, vol. 38 (2000

    We should not forget the foot: relations between signs and symptoms, damage, and function in rheumatoid arthritis

    Get PDF
    We studied rheumatoid arthritis (RA) patients with foot complaints to address the associations between clinical signs and symptoms, radiographic changes, and function in connection with disease duration. Secondly, we describe the contribution of several foot segments to the clinical presentation and function. In 30 RA patients with complaints of their feet, attributed to either signs of arthritis and/or radiographic damage, we compared radiographic, ultrasound, clinical, and functional parameters of the feet and ankle. Pain and swelling of the ankle were correlated weakly but statistically significantly with limitation and disability (0.273 to 0.293) as measured on the 5-Foot Function Index (FFI). The clinical signs of the forefoot joints did not influence any of the functional outcome measures. Radiographic scores for both forefeet (SvdH) and hindfeet (Larsen) were correlated with the total Health Assessment Questionnaire Disability Index (HAQ DI) and the 5-FFI limitation subscale. Pain and disease duration, more than radiographic damage, influence the total HAQ DI significantly. With the progression of time, structural damage and function of the rheumatic foot worsen in RA patients. Pain and swelling of the ankle contribute more to disability than radiographic damage of the foot and ankle

    The quest for the solar g modes

    Full text link
    Solar gravity modes (or g modes) -- oscillations of the solar interior for which buoyancy acts as the restoring force -- have the potential to provide unprecedented inference on the structure and dynamics of the solar core, inference that is not possible with the well observed acoustic modes (or p modes). The high amplitude of the g-mode eigenfunctions in the core and the evanesence of the modes in the convection zone make the modes particularly sensitive to the physical and dynamical conditions in the core. Owing to the existence of the convection zone, the g modes have very low amplitudes at photospheric levels, which makes the modes extremely hard to detect. In this paper, we review the current state of play regarding attempts to detect g modes. We review the theory of g modes, including theoretical estimation of the g-mode frequencies, amplitudes and damping rates. Then we go on to discuss the techniques that have been used to try to detect g modes. We review results in the literature, and finish by looking to the future, and the potential advances that can be made -- from both data and data-analysis perspectives -- to give unambiguous detections of individual g modes. The review ends by concluding that, at the time of writing, there is indeed a consensus amongst the authors that there is currently no undisputed detection of solar g modes.Comment: 71 pages, 18 figures, accepted by Astronomy and Astrophysics Revie

    Visceral Leishmaniasis Relapse in Southern Sudan (1999–2007): A Retrospective Study of Risk Factors and Trends

    Get PDF
    Visceral leishmaniasis (kala-azar) caused by Leishmania donovani is spread from person to person by Phlebotomus sandflies. Major epidemics of visceral leishmaniasis have occurred in Southern Sudan during the 20th century. The worst of these killed 100,000 people in the western Upper Nile area of Southern Sudan from 1984–1994, a loss of one-third of the population. MĂ©decins Sans FrontiĂšres has treated 40,000 kala-azar patients in Southern Sudan since the late 1980's. In this study we used routinely collected clinical data to investigate why some patients relapse after treatment. We found that patients with severely enlarged spleens (splenomegaly) are more likely to relapse. Patients treated for 17 days with a combination of two drugs (sodium stibogluconate and paromomycin) were more likely to relapse (but less likely to die) than patients treated for 30 days with a single drug (sodium stibogluconate). However, the transition from sodium stibogluconate to the sodium stibogluconate/paromomycin combination as standard treatment between 2001–2003 has not led to a significant increase in visceral leishmaniasis relapse
    • 

    corecore