576 research outputs found

    MAPS in 130 nm triple well CMOS technology for HEP applications

    Get PDF
    Deep N-well CMOS monolithic active pixel sensors (DNWMAPS) represent an alternative approach to signal processing in pixellated detectors for high energy physics experiments. Based on different resolution constraints, two prototype MAPS, suitable for applications requiring different detector pitch, have been developed and fabricated in 130 nm triple well CMOS technology. This work presents experimental results from the characterization of some test structures together with TCAD and Monte Carlo simulations intended to study the device properties in terms of charge diffusion and charge sharing among pixels

    Variable stars and stellar populations in Andromeda XXI: II. Another merged galaxy satellite of M31?

    Get PDF
    B and V time-series photometry of the M31 dwarf spheroidal satellite Andromeda XXI (And XXI) was obtained with the Large Binocular Cameras at the Large Binocular Telescope. We have identified 50 variables in And XXI, of which 41 are RR Lyrae stars (37 fundamental-mode RRab, and 4 first-overtone RRc, pulsators) and 9 are Anomalous Cepheids (ACs). The average period of the RRab stars ( = 0.64 days) and the period-amplitude diagram place And~XXI in the class of Oosterhoff II - Oosterhoff-Intermediate objects. From the average luminosity of the RR Lyrae stars we derived the galaxy distance modulus of (m-M)0_0=24.40±0.1724.40\pm0.17 mag, which is smaller than previous literature estimates, although still consistent with them within 1 σ\sigma. The galaxy color-magnitude diagram shows evidence for the presence of three different stellar generations in And~XXI: 1) an old (∌\sim 12 Gyr) and metal poor ([Fe/H]=−-1.7 dex) component traced by the RR Lyrae stars; 2) a slightly younger (10-6 Gyr) and more metal rich ([Fe/H]=−-1.5 dex) component populating the red horizontal branch, and 3) a young age (∌\sim 1 Gyr) component with same metallicity, that produced the ACs. Finally, we provide hints that And~XXI could be the result of a minor merging event between two dwarf galaxies.Comment: accepted for publications in Ap

    Deep R-band counts of z~3 Lyman break galaxy candidates with the LBT

    Full text link
    Aims. We present a deep multiwavelength imaging survey (UGR) in 3 different fields, Q0933, Q1623, and COSMOS, for a total area of ~1500arcmin^2. The data were obtained with the Large Binocular Camera on the Large Binocular Telescope. Methods. To select our Lyman break galaxy (LBG) candidates, we adopted the well established and widely used color-selection criterion (U-G vs. G-R). One of the main advantages of our survey is that it has a wider dynamic color range for U-dropout selection than in previous studies. This allows us to fully exploit the depth of our R-band images, obtaining a robust sample with few interlopers. In addition, for 2 of our fields we have spectroscopic redshift information that is needed to better estimate the completeness of our sample and interloper fraction. Results. Our limiting magnitudes reach 27.0(AB) in the R band (5\sigma) and 28.6(AB) in the U band (1\sigma). This dataset was used to derive LBG candidates at z~3. We obtained a catalog with a total of 12264 sources down to the 50% completeness magnitude limit in the R band for each field. We find a surface density of ~3 LBG candidates arcmin^2 down to R=25.5, where completeness is >=95% for all 3 fields. This number is higher than the original studies, but consistent with more recent samples.Comment: in press by A&A, full LBG candidates' catalog will be available in electronic form at the CD

    A bag of tricks: Using proper motions of Galactic stars to identify the Hercules ultra-faint dwarf galaxy members

    Get PDF
    Hercules is the prototype of the ultra-faint dwarf (UFD) galaxies. To date, there are still no firm constraints on its total luminosity, due to the difficulty of disentangling Hercules bona-fide stars from the severe Galactic field contamination. In order to better constrain Hercules properties we aim at removing foreground and background contaminants in the galaxy field using the proper motions of the Milky Way stars and the colour-colour diagram. We have obtained images of Hercules in the rSloan, BBessel and Uspec bands with the Large Binocular Telescope (LBT) and LBC-BIN mode capabilities. The rSloan new data-set combined with data from the LBT archive span a time baseline of about 5 yr, allowing us to measure for the first time proper motions of stars in the Hercules direction. The Uspec data along with existing LBT photometry allowed us to use colour-colour diagram to further remove the field contamination. Thanks to a highly-accurate procedure to derive the rSloan-filter geometric distortion solution for the LBC-red, we were able to measure stellar relative proper motions to a precision of better than 5 mas yr^-1 down to rSloan=22 mag and disentangle a significant fraction (\>90\%) of Milky Way contaminants. We ended up with a sample of 528 sources distributed over a large portion of the galaxy body (0.12 deg^2). Of these sources, 171 turned out to be background galaxies and additional foreground stars, from the analysis of the Uspec - BBessel vs. BBessel - rSloan colour-colour diagram. This leaves us with a sample of 357 likely members of the Hercules UFD. We compared the cleaned colour-magnitude diagram (CMD) with evolutionary models and synthetic CMDs, confirming the presence in Hercules of an old population (t=12\pm 2 Gyr), with a wide spread in metallicity (-3.3\<[Fe/H]\<-1.8).Comment: 16 pages, 15 figures, 3 tables, accepted for publication in A&

    Characterizing faint galaxies in the reionization epoch: LBT confirms two L<0.2L* sources at z=6.4 behind the CLASH/Frontier Fields cluster MACS0717.5+3745

    Get PDF
    We report the LBT/MODS1 spectroscopic confirmation of two images of faint Lyman alpha emitters at z=6.4z=6.4 behind the Frontier Fields galaxy cluster MACSJ0717.5+3745. A wide range of lens models suggests that the two images are highly magnified, with a strong lower limit of mu>5. These are the faintest z>6 candidates spectroscopically confirmed to date. These may be also multiple images of the same z=6.4 source as supported by their similar intrinsic properties, but the lens models are inconclusive regarding this interpretation. To be cautious, we derive the physical properties of each image individually. Thanks to the high magnification, the observed near-infrared (restframe ultraviolet) part of the spectral energy distributions and Ly-alpha lines are well detected with S/N(m_1500)>~10 and S/N(Ly-alpha)~10-15. Adopting mu>5, the absolute magnitudes, M_1500, and Ly-alpha fluxes, are fainter than -18.7 and 2.8x10^(-18)erg/s/cm2, respectively. We find a very steep ultraviolet spectral slope beta=-3.0+/-0.5 (F_lambda=lambda^(beta)), implying that these are very young, dust-free and low metallicity objects, made of standard stellar populations or even extremely metal poor stars (age<~30Myr, E(B-V)=0 and metallicity 0.0-0.2 Z/Zsolar). The objects are compact (< 1 kpc^(2)), and with a stellar mass M* < 10^(8) M_solar. The very steep beta, the presence of the Ly-alpha line and the intrinsic FWHM (<300 km/s) of these newborn objects do not exclude a possible leakage of ionizing radiation. We discuss the possibility that such faint galaxies may resemble those responsible for cosmic reionization.Comment: Accepted by ApJL; 6 pages, 4 figures, 1 table, emulateapj forma

    The contribution of faint AGNs to the ionizing background at z~4

    Get PDF
    Finding the sources responsible for the hydrogen reionization is one of the most pressing issues in cosmology. Bright QSOs are known to ionize their surrounding neighborhood, but they are too few to ensure the required HI ionizing background. A significant contribution by faint AGNs, however, could solve the problem, as recently advocated on the basis of a relatively large space density of faint active nuclei at z>4. We have carried out an exploratory spectroscopic program to measure the HI ionizing emission of 16 faint AGNs spanning a broad U-I color interval, with I~21-23 and 3.6<z<4.2. These AGNs are three magnitudes fainter than the typical SDSS QSOs (M1450<~-26) which are known to ionize their surrounding IGM at z>~4. The LyC escape fraction has been detected with S/N ratio of ~10-120 and is between 44 and 100% for all the observed faint AGNs, with a mean value of 74% at 3.6<z<4.2 and -25.1<M1450<-23.3, in agreement with the value found in the literature for much brighter QSOs (M1450<~-26) at the same redshifts. The LyC escape fraction of our faint AGNs does not show any dependence on the absolute luminosities or on the observed U-I colors. Assuming that the LyC escape fraction remains close to ~75% down to M1450~-18, we find that the AGN population can provide between 16 and 73% (depending on the adopted luminosity function) of the whole ionizing UV background at z~4, measured through the Lyman forest. This contribution increases to 25-100% if other determinations of the ionizing UV background are adopted. Extrapolating these results to z~5-7, there are possible indications that bright QSOs and faint AGNs can provide a significant contribution to the reionization of the Universe, if their space density is high at M1450~-23.Comment: Accepted for publication on A&A, 16 pages, 22 figure

    Wide and deep near-UV (360nm) galaxy counts and the extragalactic background light with the Large Binocular Camera

    Full text link
    Deep multicolour surveys are the main tool to explore the formation and evolution of the faint galaxies which are beyond the spectroscopic limit with the present technology. The photometric properties of these faint galaxies are usually compared with current renditions of semianalytical models to provide constraints on the fundamental physical processes involved in galaxy formation and evolution, namely the mass assembly and the star formation. Galaxy counts over large sky areas in the near-UV band are important because they are difficult to obtain given the low efficiency of near-UV instrumentation, even at 8m class telescopes. A large instrumental field of view helps in minimizing the biases due to the cosmic variance. We have obtained deep images in the 360nm U band provided by the blue channel of the Large Binocular Camera at the prime focus of the Large Binocular Telescope. We have derived over an area of ~0.4 sq. deg. the galaxy number counts down to U=27 in the Vega system (corresponding to U=27.86 in the AB system) at a completeness level of 30% reaching the faintest current limit for this wavelength and sky area. The shape of the galaxy counts in the U band can be described by a double power-law, the bright side being consistent with the shape of shallower surveys of comparable or greater areas. The slope bends over significantly at U>23.5 ensuring the convergence of the contribution by star forming galaxies to the EBL in the near-UV band to a value which is more than 70% of the most recent upper limits derived for this band. We have jointly compared our near-UV and K band counts collected from the literature with few selected hierarchical CDM models emphasizing critical issues in the physical description of the galaxy formation and evolution.Comment: Accepted for publication in A&A. Uses aa.cls, 9 pages, 4 figures. Citations update

    The NEOShield-2 EU project: The Italian contribution

    Get PDF
    The NEOShield-2 (2015-2017) project has been recently approved by the European Commission in the framework of the Horizon 2020 programme with the aim i) to study specific technologies and instruments to conduct close approach missions to NEOs or to undertake mitigation demonstration, and ii) to acquire in-depth information of physical properties of the population of small NEOs (50-300 m), in order to design mitigation missions and assess the consequences of an impact on Earth. The Italian scientific community is widely involved in this project

    The LBT Panoramic View on the Recent Star-Formation Activity in IC2574

    Full text link
    We present deep imaging of the star-forming dwarf galaxy IC2574 in the M81 group taken with the Large Binocular Telescope in order to study in detail the recent star-formation history of this galaxy and to constrain the stellar feedback on its HI gas. We identify the star-forming areas in the galaxy by removing a smooth disk component from the optical images. We construct pixel-by-pixel maps of stellar age and stellar mass surface density in these regions by comparing their observed colors with simple stellar populations synthesized with STARBURST99. We find that an older burst occurred about 100 Myr ago within the inner 4 kpc and that a younger burst happened in the last 10 Myr mostly at galactocentric radii between 4 and 8 kpc. We analyze the stellar populations residing in the known HI holes of IC2574. Our results indicate that, even at the remarkable photometric depth of the LBT data, there is no clear one-to-one association between the observed HI holes and the most recent bursts of star formation in IC2574. The stellar populations formed during the younger burst are usually located at the periphery of the HI holes and are seen to be younger than the holes dynamical age. The kinetic energy of the holes expansion is found to be on average 10% of the total stellar energy released by the stellar winds and supernova explosions of the young stellar populations within the holes. With the help of control apertures distributed across the galaxy we estimate that the kinetic energy stored in the HI gas in the form of its local velocity dispersion is about 35% of the total stellar energy.Comment: 16 pages, 14 figures, accepted for publication in Ap
    • 

    corecore