112 research outputs found
Collective T- and P- Odd Electromagnetic Moments in Nuclei with Octupole Deformations
Parity and time invariance violating forces produce collective P- and T- odd
moments in nuclei with static octupole deformation. Collective Schiff moment,
electric octupole and dipole and also magnetic quadrupole appear due to the
mixing of rotational levels of opposite parity and can exceed single-particle
moments by more than a factor of 100. This enhancement is due to two factors,
the collective nature of the intrinsic moments and the small energy separation
between members of parity doublets. The above moments induce T- and P- odd
effects in atoms and molecules. Experiments with such systems may improve
substantially the limits on time reversal violation.Comment: 9 pages, Revte
Enhanced T-odd P-odd Electromagnetic Moments in Reflection Asymmetric Nuclei
Collective P- and T- odd moments produced by parity and time invariance
violating forces in reflection asymmetric nuclei are considered. The enhanced
collective Schiff, electric dipole and octupole moments appear due to the
mixing of rotational levels of opposite parity. These moments can exceed
single-particle moments by more than two orders of magnitude. The enhancement
is due to the collective nature of the intrinsic moments and the small energy
separation between members of parity doublets. In turn these nuclear moments
induce enhanced T- and P- odd effects in atoms and molecules. First a simple
estimate is given and then a detailed theoretical treatment of the collective
T-, P- odd electric moments in reflection asymmetric, odd-mass nuclei is
presented and various corrections evaluated. Calculations are performed for
octupole deformed long-lived odd-mass isotopes of Rn, Fr, Ra, Ac and Pa and the
corresponding atoms. Experiments with such atoms may improve substantially the
limits on time reversal violation.Comment: 28 pages, Revte
Time invariance violating nuclear electric octupole moments
The existence of a nuclear electric octupole moment (EOM) requires both
parity and time invariance violation. The EOMs of odd nuclei that are
induced by a particular T- and P-odd interaction are calculated. We compare
such octupole moments with the collective EOMs that can occur in nuclei having
a static octupole deformation. A nuclear EOM can induce a parity and time
invariance violating atomic electric dipole moment, and the magnitude of this
effect is calculated. The contribution of a nuclear EOM to such a dipole moment
is found, in most cases, to be smaller than that of other mechanisms of atomic
electric dipole moment production.Comment: Uses RevTex, 25 page
Nearby Doorways, Parity Doublets and Parity Mixing in Compound Nuclear States
We discuss the implications of a doorway state model for parity mixing in
compound nuclear states. We argue that in order to explain the tendency of
parity violating asymmetries measured in Th to have a common sign,
doorways that contribute to parity mixing must be found in the same energy
neighbourhood of the measured resonance. The mechanism of parity mixing in this
case of nearby doorways is closely related to the intermediate structure
observed in nuclear reactions in which compound states are excited. We note
that in the region of interest (Th) nuclei exhibit octupole
deformations which leads to the existence of nearby parity doublets. These
parity doublets are then used as doorways in a model for parity mixing. The
contribution of such mechanism is estimated in a simple model.Comment: 11 pages, REVTE
A Novel Mutation in the Upstream Open Reading Frame of the CDKN1B Gene Causes a MEN4 Phenotype
PubMed ID: 23555276This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited
Probing exotic phenomena at the interface of nuclear and particle physics with the electric dipole moments of diamagnetic atoms: A unique window to hadronic and semi-leptonic CP violation
The current status of electric dipole moments of diamagnetic atoms which
involves the synergy between atomic experiments and three different theoretical
areas -- particle, nuclear and atomic is reviewed. Various models of particle
physics that predict CP violation, which is necessary for the existence of such
electric dipole moments, are presented. These include the standard model of
particle physics and various extensions of it. Effective hadron level combined
charge conjugation (C) and parity (P) symmetry violating interactions are
derived taking into consideration different ways in which a nucleon interacts
with other nucleons as well as with electrons. Nuclear structure calculations
of the CP-odd nuclear Schiff moment are discussed using the shell model and
other theoretical approaches. Results of the calculations of atomic electric
dipole moments due to the interaction of the nuclear Schiff moment with the
electrons and the P and time-reversal (T) symmetry violating
tensor-pseudotensor electron-nucleus are elucidated using different
relativistic many-body theories. The principles of the measurement of the
electric dipole moments of diamagnetic atoms are outlined. Upper limits for the
nuclear Schiff moment and tensor-pseudotensor coupling constant are obtained
combining the results of atomic experiments and relativistic many-body
theories. The coefficients for the different sources of CP violation have been
estimated at the elementary particle level for all the diamagnetic atoms of
current experimental interest and their implications for physics beyond the
standard model is discussed. Possible improvements of the current results of
the measurements as well as quantum chromodynamics, nuclear and atomic
calculations are suggested.Comment: 46 pages, 19 tables and 16 figures. A review article accepted for
EPJ
The CPT1C 5′UTR Contains a Repressing Upstream Open Reading Frame That Is Regulated by Cellular Energy Availability and AMPK
BACKGROUND:
Translational control is utilized as a means of regulating gene expression in many species. In most cases, posttranscriptional regulatory mechanisms play an important role in stress response pathways and can lead to dysfunctional physiology if blocked by mutations. Carnitine Palmitoyltransferase 1 C (CPT1C), the brain-specific member of the CPT 1 family, has previously been shown to be involved in regulating metabolism in situations of energy surplus.
PRINCIPAL FINDINGS:
Sequence analysis of the CPT1C mRNA revealed that it contains an upstream open reading frame (uORF) in the 5' UTR of its mRNA. Using CPT1C 5' UTR/luciferase constructs, we investigated the role of the uORF in translational regulation. The results presented here show that translation from the CPT1C main open reading frame (mORF) is repressed by the presence of the uORF, that this repression is relieved in response to specific stress stimuli, namely glucose deprivation and palmitate-BSA treatment, and that AMPK inhibition can relieve this uORF-dependent repression.
SIGNIFICANCE:
The fact that the mORF regulation is relieved in response to a specific set of stress stimuli rather than general stress response, hints at an involvement of CPT1C in cellular energy-sensing pathways and provides further evidence for a role of CPT1C in hypothalamic regulation of energy homeostasis
Sequencing of \u3ci\u3eAspergillus nidulans\u3c/i\u3e and comparative analysis with \u3ci\u3eA. fumigatus\u3c/i\u3e and \u3ci\u3eA. oryzae\u3c/i\u3e
The aspergilli comprise a diverse group of filamentous fungi spanning over 200 million years of evolution. Here we report the genome sequence of the model organism Aspergillus nidulans, and a comparative study with Aspergillus fumigatus, a serious human pathogen, and Aspergillus oryzae, used in the production of sake, miso, and soy sauce. Our analysis of genome structure provided a quantitative evaluation of forces driving long-term eukaryotic genome evolution. It also led to an experimentally validated model of mating-type locus evolution, suggesting the potential for sexual reproduction in A. fumigatus and A. oryzae. Our analysis of sequence conservation revealed over 5,000 non-coding regions actively conserved across all three species. Within these regions, we identified potential functional elements including a previously uncharacterized TPP riboswitch and motifs suggesting regulation in filamentous fungi by Puf family genes. We further obtained comparative and experimental evidence indicating widespread translational regulation by upstream open reading frames. These results enhance our understanding of these widely studied fungi as well as provide new insight into eukaryotic genome evolution and gene regulation. Document includes all supplementary information (820 pages). Supplementary files are also attached below as Related files. THERE IS NO SUPPLEMENTARY FILE #7. PDF file size (with supplementary files included) is 10 Mbytes. An optimized version of the ARTICLE ONLY is attached as a Related File and is 1.9 Mbytes
- …