1,096 research outputs found

    Quark model description of quasi-elastic pion knockout from the proton at JLAB

    Full text link
    The interference term between s- and t-pole contributions to the p(e,e' pi+)n cross section is evaluated on the basis of the constituent quark model. It is shown that the contribution of baryon s-poles can be modeled by a nonlocal extension of the Kroll-Rudermann contact term. This contribution is in a destructive interference with the pion t-pole that is essential to improve the description of recent JLab data at the invariant mass W=1.95 GeV. Some predictions are made for a new JLab measurement at higher values W=2.1-2.3 GeV and Q2 centered at 1.6 and 2.45 GeV2/c2.Comment: 15 pages, 4 figures, to be published in Phys. Lett.

    Baryon vector and axial content up to the 7Q component

    Full text link
    We have used the light-cone formulation of Chiral-Quark Soliton Model to investigate the vector and axial content of octet, decuplet and the hypothetical antidecuplet in the flavor SU(3) symmetry limit. We have extended previous works by computing the 7Q contribution to vector and axial charges for the octet and antidecuplet but stayed at the 5Q sector for the decuplet where the full computation needs much more time. As expected the 7Q component has a weaker impact on the quantities but still changes them by a few percent. We give also a detailed decomposition of those charges into flavor, valence quark, sea quark and antiquark contributions. Many of them are of course not (yet) measured or estimated and constitute then a theoretical estimation. Among the different interesting observations made in this work are the explicit quadrupole deformation of decuplet baryons due to the pion field and the sum of quark spins larger than the pentaquark one.Comment: 34 pages, 7 figures and 17 tables, revised and more explicit versio

    Self-Similar Log-Periodic Structures in Western Stock Markets from 2000

    Full text link
    The presence of log-periodic structures before and after stock market crashes is considered to be an imprint of an intrinsic discrete scale invariance (DSI) in this complex system. The fractal framework of the theory leaves open the possibility of observing self-similar log-periodic structures at different time scales. In the present work we analyze the daily closures of three of the most important indices worldwide since 2000: the DAX for Germany and the Nasdaq100 and the S&P500 for the United States. The qualitative behaviour of these different markets is similar during the temporal frame studied. Evidence is found for decelerating log-periodic oscillations of duration about two years and starting in September 2000. Moreover, a nested sub-structure starting in May 2002 is revealed, bringing more evidence to support the hypothesis of self-similar, log-periodic behavior. Ongoing log-periodic oscillations are also revealed. A Lomb analysis over the aforementioned periods indicates a preferential scaling factor λ2\lambda \sim 2. Higher order harmonics are also present. The spectral pattern of the data has been found to be similar to that of a Weierstrass-type function, used as a prototype of a log-periodic fractal function.Comment: 17 pages, 14 figures. International Journal of Modern Physics C, in pres

    Equivalence of pion loops in equal-time and light-front dynamics

    Full text link
    We demonstrate the equivalence of the light-front and equal-time formulations of pionic corrections to nucleon properties. As a specific example, we consider the self-energy of a nucleon dressed by pion loops, for both pseudovector and pseudoscalar pion-nucleon couplings. We derive the leading and next-to-leading nonanalytic behavior of the self-energy on the light-front, and show explicitly their equivalence in the rest frame and infinite momentum frame in equal-time quantization, as well as in a manifestly covariant formulation.Comment: 25 pages, 2 figures; typos corrected in Eqs. (A5), (A6), (A8

    Low-energy M1 excitations in 208^{208}Pb and the spin channel of the Skyrme energy-density functional

    Full text link
    We investigate the spin dependent part of the Skyrme energy-density functional, in particular its impact on the residual particle-hole interaction in self-consistent calculations of excitations. Test cases are the low-energy M1 excitations in 208^{208}Pb treated within the self-consistent random-phase approximation based on the Skyrme energy-density functional. We investigate different parametrizations of the functionals to find out which parameters of the functional have strongest correlations with M1 properties. We explore a simple method of the modification of the spin-related parameters which delivers a better description of M1 excitations while basically maintaining the good description of ground state properties.Comment: 15 pages, 7 figure

    Renormalization of the P- and T-odd nuclear potentials by the strong interaction and enhancement of P-odd effective field

    Get PDF
    Approximate analytical formulas for the self-consistent renormalization of P,T-odd and P-odd weak nuclear potentials by the residual nucleon-nucleon strong interaction are derived. The contact spin-flip nucleon-nucleon interaction reduces the constant of the P,T-odd potential 1.5 times for the proton and 1.8 times for the neutron. Renormalization of the P-odd potential is caused by the velocity dependent spin-flip component of the strong interaction. In the standard variant of π+ρ\pi + \rho-exchange, the conventional strength values lead to anomalous enhancement of the P-odd potential. Moreover, the π\pi-meson exchange contribution seems to be large enough to generate an instability (pole) in the nuclear response to a weak potential.Comment: 5 pages, Revtex3, no figure

    On Properties of the Isoscalar Giant Dipole Resonance

    Get PDF
    Main properties (strength function, energy-dependent transition density, branching ratios for direct nucleon decay) of the isoscalar giant dipole resonance in several medium-heavy mass spherical nuclei are described within a continuum-RPA approach, taking into account the smearing effect. All model parameters used in the calculations are taken from independent data. Calculation results are compared with available experimental data.Comment: 12 pages, 2 figure

    How to integrate real-world user behavior into models of the market diffusion of alternative fuels in passenger cars - An in-depth comparison of three models for Germany

    Get PDF
    The future market diffusion of alternative fuels in the passenger car sector is of great interest to both carmakers and policymakers in order to decrease CO2_{2} emissions. The decision to buy a car is not totally objective and only partly based on cost. For this reason, those modeling the future market evolution of cars powered by alternative fuels try to include behavioral and non-cost related aspects. This paper analyzes the integration of user behavior into market diffusion models and compares three models that include this aspect. The comparison comprises three parts: first, it compares the modeling approaches, then uses a harmonized data set to model the future market diffusion of alternative fuel vehicles, with and without behavioral aspects. The most important aspects of user behavior included in the models are the use of charging infrastructure, the limited model availability, the consideration of range anxiety as a hampering factor or the willingness-to-pay-more for alternative drivetrains as a supporting factor, as well as a distinction of users\u27 driving distances. User behavior is considered in various ways, but always has a limiting effect on electric vehicle market diffusion. While a model that distinguishes individual users and driving distances stresses the high relevance of this aspect, it is considered less important in models with a more aggregated inclusion of user behavior based on logit functions

    Opportunities to Intercalibrate Radiometric Sensors From International Space Station

    Get PDF
    Highly accurate measurements of Earth's thermal infrared and reflected solar radiation are required for detecting and predicting long-term climate change. We consider the concept of using the International Space Station to test instruments and techniques that would eventually be used on a dedicated mission such as the Climate Absolute Radiance and Refractivity Observatory. In particular, a quantitative investigation is performed to determine whether it is possible to use measurements obtained with a highly accurate reflected solar radiation spectrometer to calibrate similar, less accurate instruments in other low Earth orbits. Estimates of numbers of samples useful for intercalibration are made with the aid of year-long simulations of orbital motion. We conclude that the International Space Station orbit is ideally suited for the purpose of intercalibration
    corecore