66 research outputs found

    Phospho‐RNA‐seq: a modified small RNA‐seq method that reveals circulating mRNA and lncRNA fragments as potential biomarkers in human plasma

    Full text link
    Extracellular RNAs (exRNAs) in biofluids have attracted great interest as potential biomarkers. Although extracellular microRNAs in blood plasma are extensively characterized, extracellular messenger RNA (mRNA) and long non‐coding RNA (lncRNA) studies are limited. We report that plasma contains fragmented mRNAs and lncRNAs that are missed by standard small RNA‐seq protocols due to lack of 5′ phosphate or presence of 3′ phosphate. These fragments were revealed using a modified protocol (“phospho‐RNA‐seq”) incorporating RNA treatment with T4‐polynucleotide kinase, which we compared with standard small RNA‐seq for sequencing synthetic RNAs with varied 5′ and 3′ ends, as well as human plasma exRNA. Analyzing phospho‐RNA‐seq data using a custom, high‐stringency bioinformatic pipeline, we identified mRNA/lncRNA transcriptome fingerprints in plasma, including tissue‐specific gene sets. In a longitudinal study of hematopoietic stem cell transplant patients, bone marrow‐ and liver‐enriched exRNA genes were tracked with bone marrow recovery and liver injury, respectively, providing proof‐of‐concept validation as a biomarker approach. By enabling access to an unexplored realm of mRNA and lncRNA fragments, phospho‐RNA‐seq opens up new possibilities for plasma transcriptomic biomarker development.SynopsisA modified RNA‐seq method (Phospho‐RNA‐seq) revealed a new population of mRNA/lncRNA fragments in plasma, including ones that track with disease. This opens up new possibilities for disease detection via RNA profiling of plasma and other biofluids.Phospho‐RNA‐seq reveals a large population of mRNA and long non‐coding RNA fragments in human plasma, which are missed by standard small RNA‐seq protocols that depend on target RNAs having a 5′ P and 3′ OH.Accurate detection of plasma mRNA and lncRNA fragments requires a stringent bioinformatic analysis pipeline to avoid false positive alignments to mRNA and lncRNA genes.Phospho‐RNA‐seq identified ensembles of tissue‐specific transcripts in plasma of hematopoietic stem cell transplant patients, which show co‐expression patterns that vary dynamically and track with pathophysiological processes.By enabling access to an unexplored space of extracellular mRNA and lncRNA fragments, phospho‐RNA‐seq opens up new possibilities for monitoring health and disease via transcriptome fragment profiling of plasma and potentially other biofluids.A modified RNA‐seq method reveals a large population of mRNA/lncRNA fragments in plasma that are missed by standard small RNA‐seq protocols including ones that are associated with disease.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/149518/1/embj2019101695_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/149518/2/embj2019101695-sup-0002-EVFigs.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/149518/3/embj2019101695.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/149518/4/embj2019101695-sup-0001-Appendix.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/149518/5/embj2019101695.reviewer_comments.pd

    Orphan crops of archaeology-based crop history research

    Get PDF
    So-called ‘forgotten’ or ‘orphan’ crops are an important component of strategies aimed at preserving and promoting biodiversity. Knowledge of historical cultivation, usage, and geographic and evolutionary trajectories of plants, that is, crop history research, is important for the long-term success of such efforts. However, research biases in the crops chosen for study may present hurdles. This review attempts to systematically identify patterns in crop species representativeness within archaeology-based crop history research. A meta-analysis and synthesis of archaeo- botanical evidence (and lack thereof) is presented for 268 species known to have been cultivated for food prior to 1492 CE from the Mediterranean region to South Asia. We identified 39 genera with known crop plants in this geographical and histor- ical context that are currently absent from its archaeobotanical record, constituting ‘orphan’ crops of archaeobotany. In addition, a worldwide synthesis of crop species studied using geometric morphometric, archaeogenetic and stable isotope analyses of archaeological plant remains is presented, and biases in the species represented in these disciplines are discussed. Both disciplinary methodological biases and economic agenda-based biases affecting species representativeness in crop history research are apparent. This study also highlights the limited geographic diffusion of most crops and the potential for deeper historical perspectives on how crops become marginal- ized and ‘forgotten’

    Open Problems in Extracellular RNA Data Analysis: Insights From an ERCC Online Workshop.

    Get PDF
    We now know RNA can survive the harsh environment of biofluids when encapsulated in vesicles or by associating with lipoproteins or RNA binding proteins. These extracellular RNA (exRNA) play a role in intercellular signaling, serve as biomarkers of disease, and form the basis of new strategies for disease treatment. The Extracellular RNA Communication Consortium (ERCC) hosted a two-day online workshop (April 19-20, 2021) on the unique challenges of exRNA data analysis. The goal was to foster an open dialog about best practices and discuss open problems in the field, focusing initially on small exRNA sequencing data. Video recordings of workshop presentations and discussions are available (https://exRNA.org/exRNAdata2021-videos/). There were three target audiences: experimentalists who generate exRNA sequencing data, computational and data scientists who work with those groups to analyze their data, and experimental and data scientists new to the field. Here we summarize issues explored during the workshop, including progress on an effort to develop an exRNA data analysis challenge to engage the community in solving some of these open problems

    Adenosine deamination in human transcripts generates novel microRNA binding sites

    Get PDF
    Animals regulate gene expression at multiple levels, contributing to the complexity of the proteome. Among these regulatory events are post-transcriptional gene silencing, mediated by small non-coding RNAs (e.g. microRNAs), and adenosine-to-inosine (A-to-I) editing, generated by adenosine deaminases that act on double-stranded RNA (ADAR). Recent data suggest that these regulatory processes are connected at a fundamental level. A-to-I editing can affect Drosha processing or directly alter the microRNA (miRNA) sequences responsible for mRNA targeting. Here, we analyzed the previously reported adenosine deaminations occurring in human cDNAs, and asked if there was a relationship between A-to-I editing events in the mRNA 3′ untranslated regions (UTRs) and mRNA:miRNA binding. We find significant correlations between A-to-I editing and changes in miRNA complementarities. In all, over 3000 of the 12 723 distinct adenosine deaminations assessed were found to form 7-mer complementarities (known as seed matches) to a subset of human miRNAs. In 200 of the ESTs, we also noted editing within a specific 13 nucleotide motif. Strikingly, deamination of this motif simultaneously creates seed matches to three (otherwise unrelated) miRNAs. Our results suggest the creation of miRNA regulatory sites as a novel function for ADAR activity. Consequently, many miRNA target sites may only be identifiable through examining expressed sequences

    Mapping a multiplexed zoo of mRNA expression

    Get PDF
    In situ hybridization methods are used across the biological sciences to map mRNA expression within intact specimens. Multiplexed experiments, in which multiple target mRNAs are mapped in a single sample, are essential for studying regulatory interactions, but remain cumbersome in most model organisms. Programmable in situ amplifiers based on the mechanism of hybridization chain reaction (HCR) overcome this longstanding challenge by operating independently within a sample, enabling multiplexed experiments to be performed with an experimental timeline independent of the number of target mRNAs. To assist biologists working across a broad spectrum of organisms, we demonstrate multiplexed in situ HCR in diverse imaging settings: bacteria, whole-mount nematode larvae, whole-mount fruit fly embryos, whole-mount sea urchin embryos, whole-mount zebrafish larvae, whole-mount chicken embryos, whole-mount mouse embryos and formalin-fixed paraffin-embedded human tissue sections. In addition to straightforward multiplexing, in situ HCR enables deep sample penetration, high contrast and subcellular resolution, providing an incisive tool for the study of interlaced and overlapping expression patterns, with implications for research communities across the biological sciences

    Artificial miRNAs Targeting Mutant Huntingtin Show Preferential Silencing In Vitro and In Vivo

    No full text
    Huntington's disease (HD) is a dominantly inherited neurodegenerative disease caused by CAG repeat expansion in exon 1 of huntingtin (HTT). Studies in mouse models of HD with a regulated mutant transgene show that continuous mutant allele expression is required for behavioral and pathological signs; when mutant HTT expression declined, neuronal degeneration improved. To date, it is unknown whether neural cells in the adult human brain can tolerate reduction in both normal and mutant alleles. Thus, it may be important to develop allele-specific silencing approaches. Several siRNA sequences targeting the CAG expanded motif or prevalent single-nucleotide polymorphisms (SNPs) in linkage disequilibrium with the mutant allele have been designed and their selectivity demonstrated in vitro. However, it is unknown whether these allele-specific siRNAs will retain their specificity when expressed from artificial RNAi platforms. Here, we designed CAG- and SNP- targeting artificial miRNAs and demonstrate that some, but not all, retained their selectivity in vitro using an allele-specific reporter system and in vivo in a transgenic mouse model developed to express normal and mutant human HTT alleles

    Deconvolution of seed and RNA-binding protein crosstalk in RNAi-based functional genomics

    No full text
    RNA interference (RNAi) is a major, powerful platform for gene perturbations, but is restricted by off-target mechanisms. Communication between RNAs, small RNAs, and RNA-binding proteins (RBPs) is a pervasive feature of cellular RNA networks. We present a crosstalk scenario, designated as crosstalk with endogenous RBPs' (ceRBP), in which small interfering RNAs or microRNAs with seed sequences that overlap RBP motifs have extended biological effects by perturbing endogenous RBP activity. Systematic analysis of small interfering RNA (siRNA) off-target data and genome-wide RNAi cancer lethality screens using 501 human cancer cell lines, a cancer dependency map, identified that seed-to-RBP crosstalk is widespread, contributes to off-target activity, and affects RNAi performance. Specifically, deconvolution of the interactions between gene knockdown and seed-mediated silencing effects in the cancer dependency map showed widespread contributions of seed-to-RBP crosstalk to growth-phenotype modulation. These findings suggest a novel aspect of microRNA biology and offer a basis for improvement of RNAi agents and RNAi-based functional genomics.National Institutes of Health (U.S.) (Grant R01-GM034277)National Institutes of Health (U.S.) (Grant R01-CA133404)National Cancer Institute (U.S.) (Grant P30-CA14051
    corecore